Spaces:
No application file
No application file
_backend_args = None | |
_multiscale_resize_transforms = [ | |
dict( | |
_scope_='mmyolo', | |
transforms=[ | |
dict(scale=( | |
640, | |
640, | |
), type='YOLOv5KeepRatioResize'), | |
dict( | |
allow_scale_up=False, | |
pad_val=dict(img=114), | |
scale=( | |
640, | |
640, | |
), | |
type='LetterResize'), | |
], | |
type='Compose'), | |
dict( | |
_scope_='mmyolo', | |
transforms=[ | |
dict(scale=( | |
320, | |
320, | |
), type='YOLOv5KeepRatioResize'), | |
dict( | |
allow_scale_up=False, | |
pad_val=dict(img=114), | |
scale=( | |
320, | |
320, | |
), | |
type='LetterResize'), | |
], | |
type='Compose'), | |
dict( | |
_scope_='mmyolo', | |
transforms=[ | |
dict(scale=( | |
960, | |
960, | |
), type='YOLOv5KeepRatioResize'), | |
dict( | |
allow_scale_up=False, | |
pad_val=dict(img=114), | |
scale=( | |
960, | |
960, | |
), | |
type='LetterResize'), | |
], | |
type='Compose'), | |
] | |
affine_scale = 0.9 | |
albu_train_transforms = [ | |
dict(_scope_='mmyolo', p=0.01, type='Blur'), | |
dict(_scope_='mmyolo', p=0.01, type='MedianBlur'), | |
dict(_scope_='mmyolo', p=0.01, type='ToGray'), | |
dict(_scope_='mmyolo', p=0.01, type='CLAHE'), | |
] | |
backend_args = None | |
base_lr = 0.0001 | |
batch_shapes_cfg = None | |
batch_size = 4 | |
check_point_interval = 10 | |
classes = ( | |
'person', | |
'bicycle', | |
'car', | |
'motorcycle', | |
'airplane', | |
'bus', | |
'train', | |
'truck', | |
'boat', | |
'traffic light', | |
'fire hydrant', | |
'stop sign', | |
'parking meter', | |
'bench', | |
'bird', | |
'cat', | |
'dog', | |
'horse', | |
'sheep', | |
'cow', | |
'elephant', | |
'bear', | |
'zebra', | |
'giraffe', | |
'backpack', | |
'umbrella', | |
'handbag', | |
'tie', | |
'suitcase', | |
'frisbee', | |
'skis', | |
'snowboard', | |
'sports ball', | |
'kite', | |
'baseball bat', | |
'baseball glove', | |
'skateboard', | |
'surfboard', | |
'tennis racket', | |
'bottle', | |
'wine glass', | |
'cup', | |
'fork', | |
'knife', | |
'spoon', | |
'bowl', | |
'banana', | |
'apple', | |
'sandwich', | |
'orange', | |
'broccoli', | |
'carrot', | |
'hot dog', | |
'pizza', | |
'donut', | |
'cake', | |
'chair', | |
'couch', | |
'potted plant', | |
'bed', | |
'dining table', | |
'toilet', | |
'tv', | |
'laptop', | |
'mouse', | |
'remote', | |
'keyboard', | |
'cell phone', | |
'microwave', | |
'oven', | |
'toaster', | |
'sink', | |
'refrigerator', | |
'book', | |
'clock', | |
'vase', | |
'scissors', | |
'teddy bear', | |
'hair drier', | |
'toothbrush', | |
'banner', | |
'blanket', | |
'branch', | |
'bridge', | |
'building-other', | |
'bush', | |
'cabinet', | |
'cage', | |
'cardboard', | |
'carpet', | |
'ceiling-other', | |
'ceiling-tile', | |
'cloth', | |
'clothes', | |
'clouds', | |
'counter', | |
'cupboard', | |
'curtain', | |
'desk-stuff', | |
'dirt', | |
'door-stuff', | |
'fence', | |
'floor-marble', | |
'floor-other', | |
'floor-stone', | |
'floor-tile', | |
'floor-wood', | |
'flower', | |
'fog', | |
'food-other', | |
'fruit', | |
'furniture-other', | |
'grass', | |
'gravel', | |
'ground-other', | |
'hill', | |
'house', | |
'leaves', | |
'light', | |
'mat', | |
'metal', | |
'mirror-stuff', | |
'moss', | |
'mountain', | |
'mud', | |
'napkin', | |
'net', | |
'paper', | |
'pavement', | |
'pillow', | |
'plant-other', | |
'plastic', | |
'platform', | |
'playingfield', | |
'railing', | |
'railroad', | |
'river', | |
'road', | |
'rock', | |
'roof', | |
'rug', | |
'salad', | |
'sand', | |
'sea', | |
'shelf', | |
'sky-other', | |
'skyscraper', | |
'snow', | |
'solid-other', | |
'stairs', | |
'stone', | |
'straw', | |
'structural-other', | |
'table', | |
'tent', | |
'textile-other', | |
'towel', | |
'tree', | |
'vegetable', | |
'wall-brick', | |
'wall-concrete', | |
'wall-other', | |
'wall-panel', | |
'wall-stone', | |
'wall-tile', | |
'wall-wood', | |
'water-other', | |
'waterdrops', | |
'window-blind', | |
'window-other', | |
'wood', | |
) | |
close_mosaic_epochs = 10 | |
copypaste_prob = 0.3 | |
custom_hooks = [ | |
dict( | |
ema_type='ExpMomentumEMA', | |
momentum=0.0001, | |
priority=49, | |
strict_load=False, | |
type='EMAHook', | |
update_buffers=True), | |
dict( | |
switch_epoch=90, | |
switch_pipeline=[ | |
dict( | |
_scope_='mmyolo', backend_args=None, type='LoadImageFromFile'), | |
dict( | |
_scope_='mmyolo', | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
dict( | |
_scope_='mmyolo', | |
scale=( | |
640, | |
640, | |
), | |
type='YOLOv5KeepRatioResize'), | |
dict( | |
_scope_='mmyolo', | |
allow_scale_up=True, | |
pad_val=dict(img=114.0), | |
scale=( | |
640, | |
640, | |
), | |
type='LetterResize'), | |
dict( | |
_scope_='mmyolo', | |
border_val=( | |
114, | |
114, | |
114, | |
), | |
max_aspect_ratio=100, | |
max_rotate_degree=0.0, | |
max_shear_degree=0.0, | |
min_area_ratio=0.01, | |
scaling_ratio_range=( | |
0.09999999999999998, | |
1.9, | |
), | |
type='YOLOv5RandomAffine', | |
use_mask_refine=True), | |
dict( | |
_scope_='mmyolo', | |
keys=[ | |
'gt_masks', | |
], | |
type='RemoveDataElement'), | |
dict( | |
_scope_='mmyolo', | |
bbox_params=dict( | |
format='pascal_voc', | |
label_fields=[ | |
'gt_bboxes_labels', | |
'gt_ignore_flags', | |
], | |
type='BboxParams'), | |
keymap=dict(gt_bboxes='bboxes', img='image'), | |
transforms=[ | |
dict(p=0.01, type='Blur'), | |
dict(p=0.01, type='MedianBlur'), | |
dict(p=0.01, type='ToGray'), | |
dict(p=0.01, type='CLAHE'), | |
], | |
type='mmdet.Albu'), | |
dict(_scope_='mmyolo', type='YOLOv5HSVRandomAug'), | |
dict(_scope_='mmyolo', prob=0.5, type='mmdet.RandomFlip'), | |
dict( | |
_scope_='mmyolo', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'flip', | |
'flip_direction', | |
), | |
type='mmdet.PackDetInputs'), | |
], | |
type='mmdet.PipelineSwitchHook'), | |
] | |
data_root = '/data/' | |
dataset_type = 'YOLOv5CocoDataset' | |
deepen_factor = 1.0 | |
default_hooks = dict( | |
checkpoint=dict(interval=10, max_keep_ckpts=1, type='CheckpointHook'), | |
logger=dict(_scope_='mmyolo', interval=50, type='LoggerHook'), | |
param_scheduler=dict( | |
_scope_='mmyolo', | |
lr_factor=0.1, | |
max_epochs=100, | |
scheduler_type='linear', | |
type='YOLOv5ParamSchedulerHook'), | |
sampler_seed=dict(_scope_='mmyolo', type='DistSamplerSeedHook'), | |
timer=dict(_scope_='mmyolo', type='IterTimerHook'), | |
visualization=dict(_scope_='mmyolo', type='mmdet.DetVisualizationHook')) | |
default_scope = 'mmyolo' | |
env_cfg = dict( | |
cudnn_benchmark=True, | |
dist_cfg=dict(backend='nccl'), | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) | |
img_scale = ( | |
640, | |
640, | |
) | |
img_scales = [ | |
( | |
640, | |
640, | |
), | |
( | |
320, | |
320, | |
), | |
( | |
960, | |
960, | |
), | |
] | |
last_stage_out_channels = 512 | |
last_transform = [ | |
dict(_scope_='mmyolo', keys=[ | |
'gt_masks', | |
], type='RemoveDataElement'), | |
dict( | |
_scope_='mmyolo', | |
bbox_params=dict( | |
format='pascal_voc', | |
label_fields=[ | |
'gt_bboxes_labels', | |
'gt_ignore_flags', | |
], | |
type='BboxParams'), | |
keymap=dict(gt_bboxes='bboxes', img='image'), | |
transforms=[ | |
dict(p=0.01, type='Blur'), | |
dict(p=0.01, type='MedianBlur'), | |
dict(p=0.01, type='ToGray'), | |
dict(p=0.01, type='CLAHE'), | |
], | |
type='mmdet.Albu'), | |
dict(_scope_='mmyolo', type='YOLOv5HSVRandomAug'), | |
dict(_scope_='mmyolo', prob=0.5, type='mmdet.RandomFlip'), | |
dict( | |
_scope_='mmyolo', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'flip', | |
'flip_direction', | |
), | |
type='mmdet.PackDetInputs'), | |
] | |
launcher = 'pytorch' | |
load_from = 'https://download.openmmlab.com/mmyolo/v0/yolov8/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco/yolov8_l_mask-refine_syncbn_fast_8xb16-500e_coco_20230217_120100-5881dec4.pth' | |
log_level = 'INFO' | |
log_processor = dict( | |
_scope_='mmyolo', by_epoch=True, type='LogProcessor', window_size=50) | |
loss_bbox_weight = 7.5 | |
loss_cls_weight = 0.5 | |
loss_dfl_weight = 0.375 | |
lr_factor = 0.1 | |
max_aspect_ratio = 100 | |
max_epochs = 100 | |
max_keep_ckpts = 2 | |
metainfo = dict( | |
classes=( | |
'person', | |
'bicycle', | |
'car', | |
'motorcycle', | |
'airplane', | |
'bus', | |
'train', | |
'truck', | |
'boat', | |
'traffic light', | |
'fire hydrant', | |
'stop sign', | |
'parking meter', | |
'bench', | |
'bird', | |
'cat', | |
'dog', | |
'horse', | |
'sheep', | |
'cow', | |
'elephant', | |
'bear', | |
'zebra', | |
'giraffe', | |
'backpack', | |
'umbrella', | |
'handbag', | |
'tie', | |
'suitcase', | |
'frisbee', | |
'skis', | |
'snowboard', | |
'sports ball', | |
'kite', | |
'baseball bat', | |
'baseball glove', | |
'skateboard', | |
'surfboard', | |
'tennis racket', | |
'bottle', | |
'wine glass', | |
'cup', | |
'fork', | |
'knife', | |
'spoon', | |
'bowl', | |
'banana', | |
'apple', | |
'sandwich', | |
'orange', | |
'broccoli', | |
'carrot', | |
'hot dog', | |
'pizza', | |
'donut', | |
'cake', | |
'chair', | |
'couch', | |
'potted plant', | |
'bed', | |
'dining table', | |
'toilet', | |
'tv', | |
'laptop', | |
'mouse', | |
'remote', | |
'keyboard', | |
'cell phone', | |
'microwave', | |
'oven', | |
'toaster', | |
'sink', | |
'refrigerator', | |
'book', | |
'clock', | |
'vase', | |
'scissors', | |
'teddy bear', | |
'hair drier', | |
'toothbrush', | |
'banner', | |
'blanket', | |
'branch', | |
'bridge', | |
'building-other', | |
'bush', | |
'cabinet', | |
'cage', | |
'cardboard', | |
'carpet', | |
'ceiling-other', | |
'ceiling-tile', | |
'cloth', | |
'clothes', | |
'clouds', | |
'counter', | |
'cupboard', | |
'curtain', | |
'desk-stuff', | |
'dirt', | |
'door-stuff', | |
'fence', | |
'floor-marble', | |
'floor-other', | |
'floor-stone', | |
'floor-tile', | |
'floor-wood', | |
'flower', | |
'fog', | |
'food-other', | |
'fruit', | |
'furniture-other', | |
'grass', | |
'gravel', | |
'ground-other', | |
'hill', | |
'house', | |
'leaves', | |
'light', | |
'mat', | |
'metal', | |
'mirror-stuff', | |
'moss', | |
'mountain', | |
'mud', | |
'napkin', | |
'net', | |
'paper', | |
'pavement', | |
'pillow', | |
'plant-other', | |
'plastic', | |
'platform', | |
'playingfield', | |
'railing', | |
'railroad', | |
'river', | |
'road', | |
'rock', | |
'roof', | |
'rug', | |
'salad', | |
'sand', | |
'sea', | |
'shelf', | |
'sky-other', | |
'skyscraper', | |
'snow', | |
'solid-other', | |
'stairs', | |
'stone', | |
'straw', | |
'structural-other', | |
'table', | |
'tent', | |
'textile-other', | |
'towel', | |
'tree', | |
'vegetable', | |
'wall-brick', | |
'wall-concrete', | |
'wall-other', | |
'wall-panel', | |
'wall-stone', | |
'wall-tile', | |
'wall-wood', | |
'water-other', | |
'waterdrops', | |
'window-blind', | |
'window-other', | |
'wood', | |
)) | |
min_area_ratio = 0.01 | |
mixup_prob = 0.15 | |
model = dict( | |
_scope_='mmyolo', | |
backbone=dict( | |
act_cfg=dict(inplace=True, type='SiLU'), | |
arch='P5', | |
deepen_factor=1.0, | |
last_stage_out_channels=512, | |
norm_cfg=dict(eps=0.001, momentum=0.03, type='BN'), | |
type='YOLOv8CSPDarknet', | |
widen_factor=1.0), | |
bbox_head=dict( | |
bbox_coder=dict(type='DistancePointBBoxCoder'), | |
head_module=dict( | |
act_cfg=dict(inplace=True, type='SiLU'), | |
featmap_strides=[ | |
8, | |
16, | |
32, | |
], | |
in_channels=[ | |
256, | |
512, | |
512, | |
], | |
norm_cfg=dict(eps=0.001, momentum=0.03, type='BN'), | |
num_classes=171, | |
reg_max=16, | |
type='YOLOv8HeadModule', | |
widen_factor=1.0), | |
loss_bbox=dict( | |
bbox_format='xyxy', | |
iou_mode='ciou', | |
loss_weight=7.5, | |
reduction='sum', | |
return_iou=False, | |
type='IoULoss'), | |
loss_cls=dict( | |
loss_weight=0.5, | |
reduction='none', | |
type='mmdet.CrossEntropyLoss', | |
use_sigmoid=True), | |
loss_dfl=dict( | |
loss_weight=0.375, | |
reduction='mean', | |
type='mmdet.DistributionFocalLoss'), | |
prior_generator=dict( | |
offset=0.5, strides=[ | |
8, | |
16, | |
32, | |
], type='mmdet.MlvlPointGenerator'), | |
type='YOLOv8Head'), | |
data_preprocessor=dict( | |
bgr_to_rgb=True, | |
mean=[ | |
0.0, | |
0.0, | |
0.0, | |
], | |
std=[ | |
255.0, | |
255.0, | |
255.0, | |
], | |
type='YOLOv5DetDataPreprocessor'), | |
neck=dict( | |
act_cfg=dict(inplace=True, type='SiLU'), | |
deepen_factor=1.0, | |
in_channels=[ | |
256, | |
512, | |
512, | |
], | |
norm_cfg=dict(eps=0.001, momentum=0.03, type='BN'), | |
num_csp_blocks=3, | |
out_channels=[ | |
256, | |
512, | |
512, | |
], | |
type='YOLOv8PAFPN', | |
widen_factor=1.0), | |
test_cfg=dict( | |
max_per_img=300, | |
multi_label=True, | |
nms=dict(iou_threshold=0.7, type='nms'), | |
nms_pre=30000, | |
score_thr=0.001), | |
train_cfg=dict( | |
assigner=dict( | |
alpha=0.5, | |
beta=6.0, | |
eps=1e-09, | |
num_classes=171, | |
topk=10, | |
type='BatchTaskAlignedAssigner', | |
use_ciou=True)), | |
type='YOLODetector') | |
model_test_cfg = dict( | |
max_per_img=300, | |
multi_label=True, | |
nms=dict(_scope_='mmyolo', iou_threshold=0.7, type='nms'), | |
nms_pre=30000, | |
score_thr=0.001) | |
mosaic_affine_transform = [ | |
dict( | |
_scope_='mmyolo', | |
img_scale=( | |
640, | |
640, | |
), | |
pad_val=114.0, | |
pre_transform=[ | |
dict(backend_args=None, type='LoadImageFromFile'), | |
dict( | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
], | |
type='Mosaic'), | |
dict(_scope_='mmyolo', prob=0.3, type='YOLOv5CopyPaste'), | |
dict( | |
_scope_='mmyolo', | |
border=( | |
-320, | |
-320, | |
), | |
border_val=( | |
114, | |
114, | |
114, | |
), | |
max_aspect_ratio=100.0, | |
max_rotate_degree=0.0, | |
max_shear_degree=0.0, | |
min_area_ratio=0.01, | |
scaling_ratio_range=( | |
0.09999999999999998, | |
1.9, | |
), | |
type='YOLOv5RandomAffine', | |
use_mask_refine=True), | |
] | |
norm_cfg = dict(_scope_='mmyolo', eps=0.001, momentum=0.03, type='BN') | |
num_classes = 171 | |
num_det_layers = 3 | |
optim_wrapper = dict( | |
optimizer=dict(lr=0.0001, type='AdamW', weight_decay=0.05), | |
paramwise_cfg=dict( | |
bias_decay_mult=0, bypass_duplicate=True, norm_decay_mult=0), | |
type='OptimWrapper') | |
param_scheduler = [ | |
dict(begin=0, by_epoch=True, end=5, start_factor=0.1, type='LinearLR'), | |
dict( | |
begin=70, | |
by_epoch=True, | |
convert_to_iter_based=True, | |
end=100, | |
eta_min=1.0000000000000002e-06, | |
type='CosineAnnealingLR'), | |
] | |
persistent_workers = True | |
pre_transform = [ | |
dict(_scope_='mmyolo', backend_args=None, type='LoadImageFromFile'), | |
dict( | |
_scope_='mmyolo', | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
] | |
resume = False | |
save_epoch_intervals = 10 | |
strides = [ | |
8, | |
16, | |
32, | |
] | |
tal_alpha = 0.5 | |
tal_beta = 6.0 | |
tal_topk = 10 | |
test_annot = 'test_coco.json' | |
test_cfg = dict(_scope_='mmyolo', type='TestLoop') | |
test_dataloader = dict( | |
batch_size=4, | |
dataset=dict( | |
_scope_='mmyolo', | |
ann_file='test_coco.json', | |
batch_shapes_cfg=None, | |
data_prefix=dict(img='images/'), | |
data_root='/data/', | |
metainfo=dict( | |
classes=( | |
'person', | |
'bicycle', | |
'car', | |
'motorcycle', | |
'airplane', | |
'bus', | |
'train', | |
'truck', | |
'boat', | |
'traffic light', | |
'fire hydrant', | |
'stop sign', | |
'parking meter', | |
'bench', | |
'bird', | |
'cat', | |
'dog', | |
'horse', | |
'sheep', | |
'cow', | |
'elephant', | |
'bear', | |
'zebra', | |
'giraffe', | |
'backpack', | |
'umbrella', | |
'handbag', | |
'tie', | |
'suitcase', | |
'frisbee', | |
'skis', | |
'snowboard', | |
'sports ball', | |
'kite', | |
'baseball bat', | |
'baseball glove', | |
'skateboard', | |
'surfboard', | |
'tennis racket', | |
'bottle', | |
'wine glass', | |
'cup', | |
'fork', | |
'knife', | |
'spoon', | |
'bowl', | |
'banana', | |
'apple', | |
'sandwich', | |
'orange', | |
'broccoli', | |
'carrot', | |
'hot dog', | |
'pizza', | |
'donut', | |
'cake', | |
'chair', | |
'couch', | |
'potted plant', | |
'bed', | |
'dining table', | |
'toilet', | |
'tv', | |
'laptop', | |
'mouse', | |
'remote', | |
'keyboard', | |
'cell phone', | |
'microwave', | |
'oven', | |
'toaster', | |
'sink', | |
'refrigerator', | |
'book', | |
'clock', | |
'vase', | |
'scissors', | |
'teddy bear', | |
'hair drier', | |
'toothbrush', | |
'banner', | |
'blanket', | |
'branch', | |
'bridge', | |
'building-other', | |
'bush', | |
'cabinet', | |
'cage', | |
'cardboard', | |
'carpet', | |
'ceiling-other', | |
'ceiling-tile', | |
'cloth', | |
'clothes', | |
'clouds', | |
'counter', | |
'cupboard', | |
'curtain', | |
'desk-stuff', | |
'dirt', | |
'door-stuff', | |
'fence', | |
'floor-marble', | |
'floor-other', | |
'floor-stone', | |
'floor-tile', | |
'floor-wood', | |
'flower', | |
'fog', | |
'food-other', | |
'fruit', | |
'furniture-other', | |
'grass', | |
'gravel', | |
'ground-other', | |
'hill', | |
'house', | |
'leaves', | |
'light', | |
'mat', | |
'metal', | |
'mirror-stuff', | |
'moss', | |
'mountain', | |
'mud', | |
'napkin', | |
'net', | |
'paper', | |
'pavement', | |
'pillow', | |
'plant-other', | |
'plastic', | |
'platform', | |
'playingfield', | |
'railing', | |
'railroad', | |
'river', | |
'road', | |
'rock', | |
'roof', | |
'rug', | |
'salad', | |
'sand', | |
'sea', | |
'shelf', | |
'sky-other', | |
'skyscraper', | |
'snow', | |
'solid-other', | |
'stairs', | |
'stone', | |
'straw', | |
'structural-other', | |
'table', | |
'tent', | |
'textile-other', | |
'towel', | |
'tree', | |
'vegetable', | |
'wall-brick', | |
'wall-concrete', | |
'wall-other', | |
'wall-panel', | |
'wall-stone', | |
'wall-tile', | |
'wall-wood', | |
'water-other', | |
'waterdrops', | |
'window-blind', | |
'window-other', | |
'wood', | |
)), | |
pipeline=[ | |
dict(backend_args=None, type='LoadImageFromFile'), | |
dict(scale=( | |
640, | |
640, | |
), type='YOLOv5KeepRatioResize'), | |
dict( | |
allow_scale_up=False, | |
pad_val=dict(img=114), | |
scale=( | |
640, | |
640, | |
), | |
type='LetterResize'), | |
dict(_scope_='mmdet', type='LoadAnnotations', with_bbox=True), | |
dict( | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
'pad_param', | |
), | |
type='mmdet.PackDetInputs'), | |
], | |
test_mode=True, | |
type='YOLOv5CocoDataset'), | |
drop_last=False, | |
num_workers=3, | |
persistent_workers=True, | |
pin_memory=True, | |
sampler=dict(shuffle=True, type='DefaultSampler')) | |
test_evaluator = dict( | |
_scope_='mmyolo', | |
ann_file='/data/test_coco.json', | |
metric='bbox', | |
proposal_nums=( | |
100, | |
1, | |
10, | |
), | |
type='mmdet.CocoMetric') | |
test_image_folder = 'images/' | |
test_pipeline = [ | |
dict(_scope_='mmyolo', backend_args=None, type='LoadImageFromFile'), | |
dict(_scope_='mmyolo', scale=( | |
640, | |
640, | |
), type='YOLOv5KeepRatioResize'), | |
dict( | |
_scope_='mmyolo', | |
allow_scale_up=False, | |
pad_val=dict(img=114), | |
scale=( | |
640, | |
640, | |
), | |
type='LetterResize'), | |
dict(_scope_='mmdet', type='LoadAnnotations', with_bbox=True), | |
dict( | |
_scope_='mmyolo', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
'pad_param', | |
), | |
type='mmdet.PackDetInputs'), | |
] | |
train_ann_file = 'annotations/instances_train2017.json' | |
train_annot = 'train_coco.json' | |
train_batch_size_per_gpu = 16 | |
train_cfg = dict( | |
_scope_='mmyolo', | |
dynamic_intervals=[ | |
( | |
90, | |
1, | |
), | |
], | |
max_epochs=100, | |
type='EpochBasedTrainLoop', | |
val_interval=1) | |
train_data_annot_path = '/data/train_coco.json' | |
train_data_prefix = 'train2017/' | |
train_dataloader = dict( | |
batch_size=4, | |
collate_fn=dict(type='yolov5_collate'), | |
dataset=dict( | |
_scope_='mmyolo', | |
ann_file='train_coco.json', | |
data_prefix=dict(img='images/'), | |
data_root='/data/', | |
filter_cfg=dict(filter_empty_gt=False, min_size=32), | |
metainfo=dict( | |
classes=( | |
'person', | |
'bicycle', | |
'car', | |
'motorcycle', | |
'airplane', | |
'bus', | |
'train', | |
'truck', | |
'boat', | |
'traffic light', | |
'fire hydrant', | |
'stop sign', | |
'parking meter', | |
'bench', | |
'bird', | |
'cat', | |
'dog', | |
'horse', | |
'sheep', | |
'cow', | |
'elephant', | |
'bear', | |
'zebra', | |
'giraffe', | |
'backpack', | |
'umbrella', | |
'handbag', | |
'tie', | |
'suitcase', | |
'frisbee', | |
'skis', | |
'snowboard', | |
'sports ball', | |
'kite', | |
'baseball bat', | |
'baseball glove', | |
'skateboard', | |
'surfboard', | |
'tennis racket', | |
'bottle', | |
'wine glass', | |
'cup', | |
'fork', | |
'knife', | |
'spoon', | |
'bowl', | |
'banana', | |
'apple', | |
'sandwich', | |
'orange', | |
'broccoli', | |
'carrot', | |
'hot dog', | |
'pizza', | |
'donut', | |
'cake', | |
'chair', | |
'couch', | |
'potted plant', | |
'bed', | |
'dining table', | |
'toilet', | |
'tv', | |
'laptop', | |
'mouse', | |
'remote', | |
'keyboard', | |
'cell phone', | |
'microwave', | |
'oven', | |
'toaster', | |
'sink', | |
'refrigerator', | |
'book', | |
'clock', | |
'vase', | |
'scissors', | |
'teddy bear', | |
'hair drier', | |
'toothbrush', | |
'banner', | |
'blanket', | |
'branch', | |
'bridge', | |
'building-other', | |
'bush', | |
'cabinet', | |
'cage', | |
'cardboard', | |
'carpet', | |
'ceiling-other', | |
'ceiling-tile', | |
'cloth', | |
'clothes', | |
'clouds', | |
'counter', | |
'cupboard', | |
'curtain', | |
'desk-stuff', | |
'dirt', | |
'door-stuff', | |
'fence', | |
'floor-marble', | |
'floor-other', | |
'floor-stone', | |
'floor-tile', | |
'floor-wood', | |
'flower', | |
'fog', | |
'food-other', | |
'fruit', | |
'furniture-other', | |
'grass', | |
'gravel', | |
'ground-other', | |
'hill', | |
'house', | |
'leaves', | |
'light', | |
'mat', | |
'metal', | |
'mirror-stuff', | |
'moss', | |
'mountain', | |
'mud', | |
'napkin', | |
'net', | |
'paper', | |
'pavement', | |
'pillow', | |
'plant-other', | |
'plastic', | |
'platform', | |
'playingfield', | |
'railing', | |
'railroad', | |
'river', | |
'road', | |
'rock', | |
'roof', | |
'rug', | |
'salad', | |
'sand', | |
'sea', | |
'shelf', | |
'sky-other', | |
'skyscraper', | |
'snow', | |
'solid-other', | |
'stairs', | |
'stone', | |
'straw', | |
'structural-other', | |
'table', | |
'tent', | |
'textile-other', | |
'towel', | |
'tree', | |
'vegetable', | |
'wall-brick', | |
'wall-concrete', | |
'wall-other', | |
'wall-panel', | |
'wall-stone', | |
'wall-tile', | |
'wall-wood', | |
'water-other', | |
'waterdrops', | |
'window-blind', | |
'window-other', | |
'wood', | |
)), | |
pipeline=[ | |
dict(backend_args=None, type='LoadImageFromFile'), | |
dict( | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
dict( | |
img_scale=( | |
640, | |
640, | |
), | |
pad_val=114.0, | |
pre_transform=[ | |
dict(backend_args=None, type='LoadImageFromFile'), | |
dict( | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
], | |
type='Mosaic'), | |
dict(prob=0.3, type='YOLOv5CopyPaste'), | |
dict( | |
border=( | |
-320, | |
-320, | |
), | |
border_val=( | |
114, | |
114, | |
114, | |
), | |
max_aspect_ratio=100.0, | |
max_rotate_degree=0.0, | |
max_shear_degree=0.0, | |
min_area_ratio=0.01, | |
scaling_ratio_range=( | |
0.09999999999999998, | |
1.9, | |
), | |
type='YOLOv5RandomAffine', | |
use_mask_refine=True), | |
dict( | |
pre_transform=[ | |
dict(backend_args=None, type='LoadImageFromFile'), | |
dict( | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
dict( | |
img_scale=( | |
640, | |
640, | |
), | |
pad_val=114.0, | |
pre_transform=[ | |
dict(backend_args=None, type='LoadImageFromFile'), | |
dict( | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
], | |
type='Mosaic'), | |
dict(prob=0.3, type='YOLOv5CopyPaste'), | |
dict( | |
border=( | |
-320, | |
-320, | |
), | |
border_val=( | |
114, | |
114, | |
114, | |
), | |
max_aspect_ratio=100.0, | |
max_rotate_degree=0.0, | |
max_shear_degree=0.0, | |
min_area_ratio=0.01, | |
scaling_ratio_range=( | |
0.09999999999999998, | |
1.9, | |
), | |
type='YOLOv5RandomAffine', | |
use_mask_refine=True), | |
], | |
prob=0.15, | |
type='YOLOv5MixUp'), | |
dict(keys=[ | |
'gt_masks', | |
], type='RemoveDataElement'), | |
dict( | |
bbox_params=dict( | |
format='pascal_voc', | |
label_fields=[ | |
'gt_bboxes_labels', | |
'gt_ignore_flags', | |
], | |
type='BboxParams'), | |
keymap=dict(gt_bboxes='bboxes', img='image'), | |
transforms=[ | |
dict(p=0.01, type='Blur'), | |
dict(p=0.01, type='MedianBlur'), | |
dict(p=0.01, type='ToGray'), | |
dict(p=0.01, type='CLAHE'), | |
], | |
type='mmdet.Albu'), | |
dict(type='YOLOv5HSVRandomAug'), | |
dict(prob=0.5, type='mmdet.RandomFlip'), | |
dict( | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'flip', | |
'flip_direction', | |
), | |
type='mmdet.PackDetInputs'), | |
], | |
type='YOLOv5CocoDataset'), | |
num_workers=3, | |
persistent_workers=True, | |
pin_memory=True, | |
sampler=dict(shuffle=True, type='DefaultSampler')) | |
train_image_folder = 'images/' | |
train_num_workers = 8 | |
train_pipeline = [ | |
dict(_scope_='mmyolo', backend_args=None, type='LoadImageFromFile'), | |
dict( | |
_scope_='mmyolo', | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
dict( | |
_scope_='mmyolo', | |
img_scale=( | |
640, | |
640, | |
), | |
pad_val=114.0, | |
pre_transform=[ | |
dict(backend_args=None, type='LoadImageFromFile'), | |
dict( | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
], | |
type='Mosaic'), | |
dict(_scope_='mmyolo', prob=0.3, type='YOLOv5CopyPaste'), | |
dict( | |
_scope_='mmyolo', | |
border=( | |
-320, | |
-320, | |
), | |
border_val=( | |
114, | |
114, | |
114, | |
), | |
max_aspect_ratio=100.0, | |
max_rotate_degree=0.0, | |
max_shear_degree=0.0, | |
min_area_ratio=0.01, | |
scaling_ratio_range=( | |
0.09999999999999998, | |
1.9, | |
), | |
type='YOLOv5RandomAffine', | |
use_mask_refine=True), | |
dict( | |
_scope_='mmyolo', | |
pre_transform=[ | |
dict(backend_args=None, type='LoadImageFromFile'), | |
dict( | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
dict( | |
img_scale=( | |
640, | |
640, | |
), | |
pad_val=114.0, | |
pre_transform=[ | |
dict(backend_args=None, type='LoadImageFromFile'), | |
dict( | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
], | |
type='Mosaic'), | |
dict(prob=0.3, type='YOLOv5CopyPaste'), | |
dict( | |
border=( | |
-320, | |
-320, | |
), | |
border_val=( | |
114, | |
114, | |
114, | |
), | |
max_aspect_ratio=100.0, | |
max_rotate_degree=0.0, | |
max_shear_degree=0.0, | |
min_area_ratio=0.01, | |
scaling_ratio_range=( | |
0.09999999999999998, | |
1.9, | |
), | |
type='YOLOv5RandomAffine', | |
use_mask_refine=True), | |
], | |
prob=0.15, | |
type='YOLOv5MixUp'), | |
dict(_scope_='mmyolo', keys=[ | |
'gt_masks', | |
], type='RemoveDataElement'), | |
dict( | |
_scope_='mmyolo', | |
bbox_params=dict( | |
format='pascal_voc', | |
label_fields=[ | |
'gt_bboxes_labels', | |
'gt_ignore_flags', | |
], | |
type='BboxParams'), | |
keymap=dict(gt_bboxes='bboxes', img='image'), | |
transforms=[ | |
dict(p=0.01, type='Blur'), | |
dict(p=0.01, type='MedianBlur'), | |
dict(p=0.01, type='ToGray'), | |
dict(p=0.01, type='CLAHE'), | |
], | |
type='mmdet.Albu'), | |
dict(_scope_='mmyolo', type='YOLOv5HSVRandomAug'), | |
dict(_scope_='mmyolo', prob=0.5, type='mmdet.RandomFlip'), | |
dict( | |
_scope_='mmyolo', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'flip', | |
'flip_direction', | |
), | |
type='mmdet.PackDetInputs'), | |
] | |
train_pipeline_stage2 = [ | |
dict(_scope_='mmyolo', backend_args=None, type='LoadImageFromFile'), | |
dict( | |
_scope_='mmyolo', | |
mask2bbox=True, | |
type='LoadAnnotations', | |
with_bbox=True, | |
with_mask=True), | |
dict(_scope_='mmyolo', scale=( | |
640, | |
640, | |
), type='YOLOv5KeepRatioResize'), | |
dict( | |
_scope_='mmyolo', | |
allow_scale_up=True, | |
pad_val=dict(img=114.0), | |
scale=( | |
640, | |
640, | |
), | |
type='LetterResize'), | |
dict( | |
_scope_='mmyolo', | |
border_val=( | |
114, | |
114, | |
114, | |
), | |
max_aspect_ratio=100, | |
max_rotate_degree=0.0, | |
max_shear_degree=0.0, | |
min_area_ratio=0.01, | |
scaling_ratio_range=( | |
0.09999999999999998, | |
1.9, | |
), | |
type='YOLOv5RandomAffine', | |
use_mask_refine=True), | |
dict(_scope_='mmyolo', keys=[ | |
'gt_masks', | |
], type='RemoveDataElement'), | |
dict( | |
_scope_='mmyolo', | |
bbox_params=dict( | |
format='pascal_voc', | |
label_fields=[ | |
'gt_bboxes_labels', | |
'gt_ignore_flags', | |
], | |
type='BboxParams'), | |
keymap=dict(gt_bboxes='bboxes', img='image'), | |
transforms=[ | |
dict(p=0.01, type='Blur'), | |
dict(p=0.01, type='MedianBlur'), | |
dict(p=0.01, type='ToGray'), | |
dict(p=0.01, type='CLAHE'), | |
], | |
type='mmdet.Albu'), | |
dict(_scope_='mmyolo', type='YOLOv5HSVRandomAug'), | |
dict(_scope_='mmyolo', prob=0.5, type='mmdet.RandomFlip'), | |
dict( | |
_scope_='mmyolo', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'flip', | |
'flip_direction', | |
), | |
type='mmdet.PackDetInputs'), | |
] | |
tta_model = dict( | |
_scope_='mmyolo', | |
tta_cfg=dict(max_per_img=300, nms=dict(iou_threshold=0.65, type='nms')), | |
type='mmdet.DetTTAModel') | |
tta_pipeline = [ | |
dict(_scope_='mmyolo', backend_args=None, type='LoadImageFromFile'), | |
dict( | |
_scope_='mmyolo', | |
transforms=[ | |
[ | |
dict( | |
transforms=[ | |
dict(scale=( | |
640, | |
640, | |
), type='YOLOv5KeepRatioResize'), | |
dict( | |
allow_scale_up=False, | |
pad_val=dict(img=114), | |
scale=( | |
640, | |
640, | |
), | |
type='LetterResize'), | |
], | |
type='Compose'), | |
dict( | |
transforms=[ | |
dict(scale=( | |
320, | |
320, | |
), type='YOLOv5KeepRatioResize'), | |
dict( | |
allow_scale_up=False, | |
pad_val=dict(img=114), | |
scale=( | |
320, | |
320, | |
), | |
type='LetterResize'), | |
], | |
type='Compose'), | |
dict( | |
transforms=[ | |
dict(scale=( | |
960, | |
960, | |
), type='YOLOv5KeepRatioResize'), | |
dict( | |
allow_scale_up=False, | |
pad_val=dict(img=114), | |
scale=( | |
960, | |
960, | |
), | |
type='LetterResize'), | |
], | |
type='Compose'), | |
], | |
[ | |
dict(prob=1.0, type='mmdet.RandomFlip'), | |
dict(prob=0.0, type='mmdet.RandomFlip'), | |
], | |
[ | |
dict(type='mmdet.LoadAnnotations', with_bbox=True), | |
], | |
[ | |
dict( | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
'pad_param', | |
'flip', | |
'flip_direction', | |
), | |
type='mmdet.PackDetInputs'), | |
], | |
], | |
type='TestTimeAug'), | |
] | |
use_mask2refine = True | |
val_ann_file = 'annotations/instances_val2017.json' | |
val_annot = 'test_coco.json' | |
val_batch_size_per_gpu = 1 | |
val_cfg = dict(_scope_='mmyolo', type='ValLoop') | |
val_data_prefix = 'val2017/' | |
val_dataloader = dict( | |
batch_size=4, | |
dataset=dict( | |
_scope_='mmyolo', | |
ann_file='test_coco.json', | |
batch_shapes_cfg=None, | |
data_prefix=dict(img='images/'), | |
data_root='/data/', | |
metainfo=dict( | |
classes=( | |
'person', | |
'bicycle', | |
'car', | |
'motorcycle', | |
'airplane', | |
'bus', | |
'train', | |
'truck', | |
'boat', | |
'traffic light', | |
'fire hydrant', | |
'stop sign', | |
'parking meter', | |
'bench', | |
'bird', | |
'cat', | |
'dog', | |
'horse', | |
'sheep', | |
'cow', | |
'elephant', | |
'bear', | |
'zebra', | |
'giraffe', | |
'backpack', | |
'umbrella', | |
'handbag', | |
'tie', | |
'suitcase', | |
'frisbee', | |
'skis', | |
'snowboard', | |
'sports ball', | |
'kite', | |
'baseball bat', | |
'baseball glove', | |
'skateboard', | |
'surfboard', | |
'tennis racket', | |
'bottle', | |
'wine glass', | |
'cup', | |
'fork', | |
'knife', | |
'spoon', | |
'bowl', | |
'banana', | |
'apple', | |
'sandwich', | |
'orange', | |
'broccoli', | |
'carrot', | |
'hot dog', | |
'pizza', | |
'donut', | |
'cake', | |
'chair', | |
'couch', | |
'potted plant', | |
'bed', | |
'dining table', | |
'toilet', | |
'tv', | |
'laptop', | |
'mouse', | |
'remote', | |
'keyboard', | |
'cell phone', | |
'microwave', | |
'oven', | |
'toaster', | |
'sink', | |
'refrigerator', | |
'book', | |
'clock', | |
'vase', | |
'scissors', | |
'teddy bear', | |
'hair drier', | |
'toothbrush', | |
'banner', | |
'blanket', | |
'branch', | |
'bridge', | |
'building-other', | |
'bush', | |
'cabinet', | |
'cage', | |
'cardboard', | |
'carpet', | |
'ceiling-other', | |
'ceiling-tile', | |
'cloth', | |
'clothes', | |
'clouds', | |
'counter', | |
'cupboard', | |
'curtain', | |
'desk-stuff', | |
'dirt', | |
'door-stuff', | |
'fence', | |
'floor-marble', | |
'floor-other', | |
'floor-stone', | |
'floor-tile', | |
'floor-wood', | |
'flower', | |
'fog', | |
'food-other', | |
'fruit', | |
'furniture-other', | |
'grass', | |
'gravel', | |
'ground-other', | |
'hill', | |
'house', | |
'leaves', | |
'light', | |
'mat', | |
'metal', | |
'mirror-stuff', | |
'moss', | |
'mountain', | |
'mud', | |
'napkin', | |
'net', | |
'paper', | |
'pavement', | |
'pillow', | |
'plant-other', | |
'plastic', | |
'platform', | |
'playingfield', | |
'railing', | |
'railroad', | |
'river', | |
'road', | |
'rock', | |
'roof', | |
'rug', | |
'salad', | |
'sand', | |
'sea', | |
'shelf', | |
'sky-other', | |
'skyscraper', | |
'snow', | |
'solid-other', | |
'stairs', | |
'stone', | |
'straw', | |
'structural-other', | |
'table', | |
'tent', | |
'textile-other', | |
'towel', | |
'tree', | |
'vegetable', | |
'wall-brick', | |
'wall-concrete', | |
'wall-other', | |
'wall-panel', | |
'wall-stone', | |
'wall-tile', | |
'wall-wood', | |
'water-other', | |
'waterdrops', | |
'window-blind', | |
'window-other', | |
'wood', | |
)), | |
pipeline=[ | |
dict(backend_args=None, type='LoadImageFromFile'), | |
dict(scale=( | |
640, | |
640, | |
), type='YOLOv5KeepRatioResize'), | |
dict( | |
allow_scale_up=False, | |
pad_val=dict(img=114), | |
scale=( | |
640, | |
640, | |
), | |
type='LetterResize'), | |
dict(_scope_='mmdet', type='LoadAnnotations', with_bbox=True), | |
dict( | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
'pad_param', | |
), | |
type='mmdet.PackDetInputs'), | |
], | |
test_mode=True, | |
type='YOLOv5CocoDataset'), | |
drop_last=False, | |
num_workers=3, | |
persistent_workers=True, | |
pin_memory=True, | |
sampler=dict(shuffle=True, type='DefaultSampler')) | |
val_evaluator = dict( | |
_scope_='mmyolo', | |
ann_file='/data/test_coco.json', | |
metric='bbox', | |
proposal_nums=( | |
100, | |
1, | |
10, | |
), | |
type='mmdet.CocoMetric') | |
val_image_folder = 'images/' | |
val_interval = 1 | |
val_interval_stage2 = 1 | |
val_num_workers = 2 | |
vis_backends = [ | |
dict(_scope_='mmyolo', type='LocalVisBackend'), | |
] | |
visualizer = dict( | |
_scope_='mmyolo', | |
name='visualizer', | |
type='mmdet.DetLocalVisualizer', | |
vis_backends=[ | |
dict(type='LocalVisBackend'), | |
]) | |
warmup_epochs = 5 | |
weight_decay = 0.0005 | |
widen_factor = 1.0 | |
work_dir = '/out' | |