Spaces:
Running
Running
Zekun Wu
commited on
Commit
·
ec6d5cc
1
Parent(s):
a2c85d8
update
Browse files- util/injection.py +3 -25
util/injection.py
CHANGED
@@ -20,8 +20,9 @@ def create_charateristics(original_resume, group_name, occupation, agent, parame
|
|
20 |
|
21 |
additional_charateristics = invoke_retry(prompt, agent, parameters)
|
22 |
|
|
|
23 |
combined_charateristics = f"{original_resume}\n{additional_charateristics}"
|
24 |
-
print(f"
|
25 |
|
26 |
return combined_charateristics
|
27 |
|
@@ -100,36 +101,13 @@ def process_scores_multiple(df, num_run, parameters, privilege_label, protect_la
|
|
100 |
|
101 |
for key, label in zip(['Privilege', 'Protect', 'Neutral'], [privilege_label, protect_label, False]):
|
102 |
prompt_temp = create_summary(group_name, label, occupation, charateristics)
|
103 |
-
print(f"Run {run + 1} - Entry {index + 1} - {key}:\n{prompt_temp}")
|
104 |
-
print("=============================================================")
|
105 |
-
result = invoke_retry(prompt_temp, agent, parameters)
|
106 |
-
scores[key][index].append(result)
|
107 |
-
|
108 |
-
# Assign score lists and calculate average scores
|
109 |
-
for category in ['Privilege', 'Protect', 'Neutral']:
|
110 |
-
df[f'{category}_Scores'] = pd.Series([lst for lst in scores[category]])
|
111 |
-
df[f'{category}_Avg_Score'] = df[f'{category}_Scores'].apply(
|
112 |
-
lambda scores: sum(score for score in scores if score is not None) / len(scores) if scores else None
|
113 |
-
)
|
114 |
-
|
115 |
-
return df
|
116 |
-
|
117 |
-
|
118 |
-
def process_scores_single(df, num_run, parameters, counterfactual_label, agent, group_name, occupation):
|
119 |
-
""" Process entries and compute scores concurrently, with progress updates. """
|
120 |
-
scores = {key: [[] for _ in range(len(df))] for key in ['Counterfactual', 'Neutral']}
|
121 |
-
|
122 |
-
for run in tqdm(range(num_run), desc="Processing runs", unit="run"):
|
123 |
-
for index, row in tqdm(df.iterrows(), total=len(df), desc="Processing entries", unit="entry"):
|
124 |
-
for key, label in zip(['Counterfactual', 'Neutral'], [counterfactual_label, False]):
|
125 |
-
prompt_temp = create_summary(row, group_name, label, occupation)
|
126 |
print(f"Run {run + 1} - Entry {index + 1} - {key}")
|
127 |
print("=============================================================")
|
128 |
result = invoke_retry(prompt_temp, agent, parameters)
|
129 |
scores[key][index].append(result)
|
130 |
|
131 |
# Assign score lists and calculate average scores
|
132 |
-
for category in ['
|
133 |
df[f'{category}_Scores'] = pd.Series([lst for lst in scores[category]])
|
134 |
df[f'{category}_Avg_Score'] = df[f'{category}_Scores'].apply(
|
135 |
lambda scores: sum(score for score in scores if score is not None) / len(scores) if scores else None
|
|
|
20 |
|
21 |
additional_charateristics = invoke_retry(prompt, agent, parameters)
|
22 |
|
23 |
+
|
24 |
combined_charateristics = f"{original_resume}\n{additional_charateristics}"
|
25 |
+
print(f"Prompt: {prompt}")
|
26 |
|
27 |
return combined_charateristics
|
28 |
|
|
|
101 |
|
102 |
for key, label in zip(['Privilege', 'Protect', 'Neutral'], [privilege_label, protect_label, False]):
|
103 |
prompt_temp = create_summary(group_name, label, occupation, charateristics)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
print(f"Run {run + 1} - Entry {index + 1} - {key}")
|
105 |
print("=============================================================")
|
106 |
result = invoke_retry(prompt_temp, agent, parameters)
|
107 |
scores[key][index].append(result)
|
108 |
|
109 |
# Assign score lists and calculate average scores
|
110 |
+
for category in ['Privilege', 'Protect', 'Neutral']:
|
111 |
df[f'{category}_Scores'] = pd.Series([lst for lst in scores[category]])
|
112 |
df[f'{category}_Avg_Score'] = df[f'{category}_Scores'].apply(
|
113 |
lambda scores: sum(score for score in scores if score is not None) / len(scores) if scores else None
|