Spaces:
Sleeping
Sleeping
import pandas as pd | |
import plotly.graph_objs as go | |
import plotly.express as px | |
def create_score_plot(df): | |
fig = go.Figure() | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['Privilege_Avg_Score'], | |
mode='lines+markers', name='Privilege', | |
text=df['Role'], hoverinfo='text+y' | |
)) | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['Protect_Avg_Score'], | |
mode='lines+markers', name='Protection', | |
text=df['Role'], hoverinfo='text+y' | |
)) | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['Neutral_Avg_Score'], | |
mode='lines+markers', name='Neutral', | |
text=df['Role'], hoverinfo='text+y' | |
)) | |
fig.update_layout( | |
title=f'Scores of Resumes', | |
xaxis_title='Resume Index', | |
yaxis_title='Score', | |
legend_title='Score Type', | |
hovermode='closest' | |
) | |
return fig | |
def create_rank_plots(df): | |
fig = go.Figure() | |
# Add traces for ranks | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['Privilege_Rank'], | |
mode='lines+markers', name='Rank Privilege', | |
text=df['Role'], hoverinfo='text+y' | |
)) | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['Protect_Rank'], | |
mode='lines+markers', name='Rank Protection', | |
text=df['Role'], hoverinfo='text+y' | |
)) | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['Neutral_Rank'], | |
mode='lines+markers', name='Rank Neutral', | |
text=df['Role'], hoverinfo='text+y' | |
)) | |
# Update layout | |
fig.update_layout( | |
title='Ranks of Scores', | |
xaxis_title='Resume Index', | |
yaxis_title='Rank', | |
legend_title='Rank Type', | |
hovermode='closest' | |
) | |
return fig | |
def create_correlation_heatmaps(df): | |
scores_df = df[['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']] | |
ranks_df = df[['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank']] | |
# Pearson correlation | |
scores_corr_pearson = scores_df.corr(method='pearson') | |
ranks_corr_pearson = ranks_df.corr(method='pearson') | |
# Spearman correlation | |
scores_corr_spearman = scores_df.corr(method='spearman') | |
ranks_corr_spearman = ranks_df.corr(method='spearman') | |
# Kendall Tau correlation | |
scores_corr_kendall = scores_df.corr(method='kendall') | |
ranks_corr_kendall = ranks_df.corr(method='kendall') | |
# Plotting the heatmaps | |
fig = go.Figure() | |
fig.add_trace(go.Heatmap( | |
z=scores_corr_pearson.values, | |
x=scores_corr_pearson.columns, | |
y=scores_corr_pearson.index, | |
colorscale='Viridis', | |
showscale=True, | |
name='Scores Pearson Correlation' | |
)) | |
fig.add_trace(go.Heatmap( | |
z=ranks_corr_pearson.values, | |
x=ranks_corr_pearson.columns, | |
y=ranks_corr_pearson.index, | |
colorscale='Viridis', | |
showscale=True, | |
name='Ranks Pearson Correlation' | |
)) | |
fig.add_trace(go.Heatmap( | |
z=scores_corr_spearman.values, | |
x=scores_corr_spearman.columns, | |
y=scores_corr_spearman.index, | |
colorscale='Cividis', | |
showscale=True, | |
name='Scores Spearman Correlation' | |
)) | |
fig.add_trace(go.Heatmap( | |
z=ranks_corr_spearman.values, | |
x=ranks_corr_spearman.columns, | |
y=ranks_corr_spearman.index, | |
colorscale='Cividis', | |
showscale=True, | |
name='Ranks Spearman Correlation' | |
)) | |
fig.add_trace(go.Heatmap( | |
z=scores_corr_kendall.values, | |
x=scores_corr_kendall.columns, | |
y=scores_corr_kendall.index, | |
colorscale='Inferno', | |
showscale=True, | |
name='Scores Kendall Correlation' | |
)) | |
fig.add_trace(go.Heatmap( | |
z=ranks_corr_kendall.values, | |
x=ranks_corr_kendall.columns, | |
y=ranks_corr_kendall.index, | |
colorscale='Inferno', | |
showscale=True, | |
name='Ranks Kendall Correlation' | |
)) | |
# Update layout | |
fig.update_layout( | |
title='Correlation Heatmaps', | |
xaxis_nticks=36 | |
) | |
return fig | |