Spaces:
Running
Running
import pandas as pd | |
import numpy as np | |
from scikit_posthocs import posthoc_nemenyi | |
from scipy import stats | |
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway | |
from statsmodels.stats.multicomp import MultiComparison | |
from scipy.stats import spearmanr, pearsonr, kendalltau, entropy | |
from scipy.spatial.distance import jensenshannon | |
from scipy.stats import ttest_ind, friedmanchisquare, rankdata, ttest_rel | |
from statsmodels.stats.multicomp import pairwise_tukeyhsd | |
from scipy.stats import ttest_1samp | |
# def bootstrap_t_test(data1, data2, num_bootstrap=1000): | |
# """Perform a bootstrapped t-test.""" | |
# observed_t_stat, _ = ttest_ind(data1, data2) | |
# combined = np.concatenate([data1, data2]) | |
# t_stats = [] | |
# | |
# for _ in range(num_bootstrap): | |
# np.random.shuffle(combined) | |
# new_data1 = combined[:len(data1)] | |
# new_data2 = combined[len(data1):] | |
# t_stat, _ = ttest_ind(new_data1, new_data2) | |
# t_stats.append(t_stat) | |
# | |
# p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap | |
# return observed_t_stat, p_value | |
# def bootstrap_t_test(data1, data2, num_bootstrap=1000): | |
# """Perform a bootstrapped paired t-test for mean difference being zero.""" | |
# # Calculate the observed differences between paired samples | |
# differences = data1 - data2 | |
# # Compute the observed t-statistic for the differences | |
# observed_t_stat, _ = ttest_1samp(differences, 0) | |
# | |
# t_stats = [] | |
# | |
# for _ in range(num_bootstrap): | |
# # Resample the differences with replacement | |
# resampled_diffs = np.random.choice(differences, size=len(differences), replace=True) | |
# # Perform a one-sample t-test on the resampled differences against zero | |
# t_stat, _ = ttest_1samp(resampled_diffs, 0) | |
# # Append the t-statistic to the list | |
# t_stats.append(t_stat) | |
# | |
# # Calculate the p-value as the proportion of bootstrap t-statistics | |
# # that are as extreme as or more extreme than the observed t-statistic | |
# p_value = np.sum(np.abs(t_stats) >= np.abs(observed_t_stat)) / num_bootstrap | |
# return observed_t_stat, p_value | |
# def posthoc_friedman(data, variables, rank_suffix='_Rank'): | |
# """Perform a post-hoc analysis for the Friedman test using pairwise comparisons.""" | |
# ranked_data = data[[v + rank_suffix for v in variables]].to_numpy() | |
# num_subjects = ranked_data.shape[0] | |
# num_conditions = ranked_data.shape[1] | |
# comparisons = [] | |
# | |
# for i in range(num_conditions): | |
# for j in range(i + 1, num_conditions): | |
# diff = ranked_data[:, i] - ranked_data[:, j] | |
# abs_diff = np.abs(diff) | |
# avg_diff = np.mean(diff) | |
# se_diff = np.std(diff, ddof=1) / np.sqrt(num_subjects) | |
# z_value = avg_diff / se_diff | |
# p_value = 2 * (1 - stats.norm.cdf(np.abs(z_value))) | |
# comparisons.append({ | |
# "Group1": variables[i], | |
# "Group2": variables[j], | |
# "Z": z_value, | |
# "p-value": p_value | |
# }) | |
# | |
# return comparisons | |
def statistical_tests(data): | |
"""Perform various statistical tests to evaluate potential biases.""" | |
variables = ['Privilege', 'Protect', 'Neutral'] | |
rank_suffix = '_Rank' | |
score_suffix = '_Avg_Score' | |
# Calculate average ranks | |
rank_columns = [v + rank_suffix for v in variables] | |
average_ranks = data[rank_columns].mean() | |
# Statistical tests | |
rank_data = [data[col] for col in rank_columns] | |
# Pairwise tests | |
pairs = [ | |
('Privilege', 'Protect'), | |
('Protect', 'Neutral'), | |
('Privilege', 'Neutral') | |
] | |
pairwise_results = { | |
'Wilcoxon Test': {} | |
} | |
for (var1, var2) in pairs: | |
pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}' | |
pair_rank_score = f'{var1}{rank_suffix} vs {var2}{rank_suffix}' | |
# Wilcoxon Signed-Rank Test | |
if len(data) > 20: | |
wilcoxon_stat, wilcoxon_p = wilcoxon(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}']) | |
else: | |
wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test." | |
pairwise_results['Wilcoxon Test'][pair_rank_score] = {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p} | |
# # Bootstrapped T-test for independent samples | |
# t_stat, t_p = bootstrap_t_test(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}']) | |
# pairwise_results['T-Test'][pair_rank_score] = {"Statistic": t_stat, "p-value": t_p} | |
# Friedman test | |
friedman_stat, friedman_p = friedmanchisquare(*rank_data) | |
rank_matrix = data[rank_columns].values | |
rank_matrix_transposed = np.transpose(rank_matrix) | |
posthoc_results = posthoc_nemenyi(rank_matrix_transposed) | |
#posthoc_results = posthoc_friedman(data, variables, rank_suffix) | |
results = { | |
"Average Ranks": average_ranks.to_dict(), | |
"Friedman Test": { | |
"Statistic": friedman_stat, | |
"p-value": friedman_p, | |
"Post-hoc": posthoc_results | |
}, | |
**pairwise_results, | |
} | |
return results | |
def hellinger_distance(p, q): | |
"""Calculate the Hellinger distance between two probability distributions.""" | |
return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q)) ** 2)) | |
def calculate_correlations(df): | |
"""Calculate Spearman, Pearson, and Kendall's Tau correlations for the given ranks in the dataframe.""" | |
correlations = { | |
'Spearman': {}, | |
'Pearson': {}, | |
'Kendall Tau': {} | |
} | |
columns = ['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank'] | |
for i in range(len(columns)): | |
for j in range(i + 1, len(columns)): | |
col1, col2 = columns[i], columns[j] | |
correlations['Spearman'][f'{col1} vs {col2}'] = spearmanr(df[col1], df[col2]).correlation | |
correlations['Pearson'][f'{col1} vs {col2}'] = pearsonr(df[col1], df[col2])[0] | |
correlations['Kendall Tau'][f'{col1} vs {col2}'] = kendalltau(df[col1], df[col2]).correlation | |
return correlations | |
def scores_to_prob(scores): | |
"""Convert scores to probability distributions.""" | |
value_counts = scores.value_counts() | |
probabilities = value_counts / value_counts.sum() | |
full_prob = np.zeros(int(scores.max()) + 1) | |
full_prob[value_counts.index.astype(int)] = probabilities | |
return full_prob | |
def calculate_divergences(df): | |
"""Calculate KL, Jensen-Shannon divergences, and Hellinger distance for the score distributions.""" | |
score_columns = ['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score'] | |
probabilities = {col: scores_to_prob(df[col]) for col in score_columns} | |
divergences = { | |
'KL Divergence': {}, | |
'Jensen-Shannon Divergence': {}, | |
'Hellinger Distance': {} | |
} | |
for i in range(len(score_columns)): | |
for j in range(i + 1, len(score_columns)): | |
col1, col2 = score_columns[i], score_columns[j] | |
divergences['KL Divergence'][f'{col1} vs {col2}'] = entropy(probabilities[col1], probabilities[col2]) | |
divergences['Jensen-Shannon Divergence'][f'{col1} vs {col2}'] = jensenshannon(probabilities[col1], | |
probabilities[col2]) | |
divergences['Hellinger Distance'][f'{col1} vs {col2}'] = hellinger_distance(probabilities[col1], | |
probabilities[col2]) | |
return divergences | |
# def statistical_tests(data): | |
# """Perform various statistical tests to evaluate potential biases.""" | |
# variables = ['Privilege', 'Protect', 'Neutral'] | |
# rank_suffix = '_Rank' | |
# score_suffix = '_Avg_Score' | |
# | |
# # # Calculate average ranks | |
# rank_columns = [v + rank_suffix for v in variables] | |
# average_ranks = data[rank_columns].mean() | |
# | |
# # Statistical tests | |
# rank_data = [data[col] for col in rank_columns] | |
# | |
# # Pairwise tests | |
# pairs = [ | |
# ('Privilege', 'Protect'), | |
# ('Protect', 'Neutral'), | |
# ('Privilege', 'Neutral') | |
# ] | |
# | |
# pairwise_results = { | |
# 'T-Test': {} | |
# } | |
# | |
# for (var1, var2) in pairs: | |
# pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}' | |
# | |
# # T-test for independent samples | |
# t_stat, t_p = ttest_ind(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}']) | |
# pairwise_results['T-Test'][pair_name_score] = {"Statistic": t_stat, "p-value": t_p} | |
# | |
# results = { | |
# "Average Ranks": average_ranks.to_dict(), | |
# "Friedman Test": { | |
# "Statistic": friedmanchisquare(*rank_data).statistic, | |
# "p-value": friedmanchisquare(*rank_data).pvalue | |
# }, | |
# **pairwise_results, | |
# } | |
# | |
# return results | |
def disabled_statistical_tests(data): | |
"""Perform various statistical tests to evaluate potential biases.""" | |
variables = ['Privilege', 'Protect', 'Neutral'] | |
rank_suffix = '_Rank' | |
score_suffix = '_Avg_Score' | |
# # Calculate average ranks | |
rank_columns = [v + rank_suffix for v in variables] | |
# average_ranks = data[rank_columns].mean() | |
# Statistical tests | |
rank_data = [data[col] for col in rank_columns] | |
kw_stat, kw_p = kruskal(*rank_data) | |
# Pairwise tests | |
pairwise_results = {} | |
pairs = [ | |
('Privilege', 'Protect'), | |
('Protect', 'Neutral'), | |
('Privilege', 'Neutral') | |
] | |
pairwise_results = { | |
# 'Mann-Whitney U Test': {}, | |
# 'Wilcoxon Test': {}, | |
# 'Levene\'s Test': {}, | |
'T-Test': {} | |
} | |
for (var1, var2) in pairs: | |
pair_name_rank = f'{var1}{rank_suffix} vs {var2}{rank_suffix}' | |
pair_name_score = f'{var1}{score_suffix} vs {var2}{score_suffix}' | |
# # Mann-Whitney U Test | |
# mw_stat, mw_p = mannwhitneyu(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}']) | |
# pairwise_results['Mann-Whitney U Test'][pair_name_rank] = {"Statistic": mw_stat, "p-value": mw_p} | |
# | |
# # Wilcoxon Signed-Rank Test | |
# if len(data) > 20: | |
# wilcoxon_stat, wilcoxon_p = wilcoxon(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}']) | |
# else: | |
# wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test." | |
# pairwise_results['Wilcoxon Test'][pair_name_rank] = {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p} | |
# | |
# Levene's Test for equality of variances | |
# levene_stat, levene_p = levene(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}']) | |
# pairwise_results['Levene\'s Test'][pair_name_score] = {"Statistic": levene_stat, "p-value": levene_p} | |
# T-test for independent samples | |
t_stat, t_p = ttest_ind(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}']) | |
#equal_var=(levene_p > 0.05)) | |
pairwise_results['T-Test'][pair_name_score] = {"Statistic": t_stat, "p-value": t_p} | |
# ANOVA and post-hoc tests if applicable | |
# score_columns = [v + score_suffix for v in variables] | |
# score_data = [data[col] for col in score_columns] | |
# anova_stat, anova_p = f_oneway(*score_data) | |
# if anova_p < 0.05: | |
# mc = MultiComparison(data.melt()['value'], data.melt()['variable']) | |
# tukey_result = mc.tukeyhsd() | |
# tukey_result_summary = tukey_result.summary().as_html() | |
# else: | |
# tukey_result_summary = "ANOVA not significant, no post-hoc test performed." | |
results = { | |
#"Average Ranks": average_ranks.to_dict(), | |
"Friedman Test": { | |
"Statistic": friedmanchisquare(*rank_data).statistic, | |
"p-value": friedmanchisquare(*rank_data).pvalue | |
}, | |
# "Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p}, | |
**pairwise_results, | |
# "ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p}, | |
#"Tukey HSD Test": tukey_result_summary | |
} | |
return results |