Spaces:
Running
Running
import pandas as pd | |
import numpy as np | |
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway | |
from statsmodels.stats.multicomp import MultiComparison | |
def statistical_tests_multiple(data): | |
# Calculate average ranks | |
average_ranks = data[['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank']].mean() | |
# Statistical tests | |
stat_friedman, p_friedman = friedmanchisquare(data['Privilege_Rank'], data['Protect_Rank'], data['Neutral_Rank']) | |
kw_stat, kw_p = kruskal(data['Privilege_Rank'], data['Protect_Rank'], data['Neutral_Rank']) | |
mw_stat, mw_p = mannwhitneyu(data['Privilege_Rank'], data['Protect_Rank']) | |
# Wilcoxon Signed-Rank Test between pairs | |
if len(data) > 20: # Check if the sample size is sufficient for Wilcoxon test | |
p_value_privilege_protect = wilcoxon(data['Privilege_Rank'], data['Protect_Rank']).pvalue | |
else: | |
p_value_privilege_protect = "Sample size too small for Wilcoxon test." | |
# Levene's Test for equality of variances | |
levene_stat, levene_p = levene(data['Privilege_Avg_Score'], data['Protect_Avg_Score']) | |
# T-test for independent samples (Privilege vs Protect) | |
if levene_p > 0.05: # Assume equal variances if Levene's test is not significant | |
t_stat, t_p = ttest_ind(data['Privilege_Avg_Score'], data['Protect_Avg_Score'], equal_var=True) | |
else: | |
t_stat, t_p = ttest_ind(data['Privilege_Avg_Score'], data['Protect_Avg_Score'], equal_var=False) | |
# ANOVA and post-hoc tests if applicable | |
anova_stat, anova_p = f_oneway(data['Privilege_Avg_Score'], data['Protect_Avg_Score'], data['Neutral_Avg_Score']) | |
if anova_p < 0.05: | |
mc = MultiComparison( | |
pd.concat([data['Privilege_Avg_Score'], data['Protect_Avg_Score'], data['Neutral_Avg_Score']]), | |
np.repeat(['Privilege', 'Protect', 'Neutral'], len(data))) | |
tukey_result = mc.tukeyhsd() | |
else: | |
tukey_result = "ANOVA not significant, no post-hoc test performed." | |
results = { | |
"Average Ranks": average_ranks, | |
"Friedman Test": {"Statistic": stat_friedman, "p-value": p_friedman}, | |
"Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p}, | |
"Mann-Whitney U Test": {"Statistic": mw_stat, "p-value": mw_p}, | |
"Wilcoxon Test Between Privilege and Protect": p_value_privilege_protect, | |
"Levene's Test": {"Statistic": levene_stat, "p-value": levene_p}, | |
"T-Test (Independent)": {"Statistic": t_stat, "p-value": t_p}, | |
"ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p}, | |
"Tukey HSD Test": tukey_result | |
} | |
return results | |
def result_evaluation_multiple(test_results): | |
evaluation = {} | |
# Average Ranks: Provide insights based on the ranking | |
evaluation['Average Ranks'] = "Privilege: {:.2f}, Protect: {:.2f}, Neutral: {:.2f}".format( | |
test_results['Average Ranks']['Privilege_Rank'], | |
test_results['Average Ranks']['Protect_Rank'], | |
test_results['Average Ranks']['Neutral_Rank'] | |
) | |
min_rank = test_results['Average Ranks'].idxmin() | |
max_rank = test_results['Average Ranks'].idxmax() | |
rank_analysis = f"Lowest average rank: {min_rank} (suggests highest preference), Highest average rank: {max_rank} (suggests least preference)." | |
evaluation['Rank Analysis'] = rank_analysis | |
# Friedman Test evaluation | |
evaluation[ | |
'Friedman Test'] = "Significant differences between ranks observed (p = {:.5f}), suggesting potential bias.".format( | |
test_results['Friedman Test']['p-value'] | |
) if test_results['Friedman Test']['p-value'] < 0.05 else "No significant differences between ranks." | |
# Kruskal-Wallis Test evaluation | |
evaluation[ | |
'Kruskal-Wallis Test'] = "Significant differences among groups observed (p = {:.5f}), indicating potential biases.".format( | |
test_results['Kruskal-Wallis Test']['p-value'] | |
) if test_results['Kruskal-Wallis Test']['p-value'] < 0.05 else "No significant differences among groups." | |
# Mann-Whitney U Test evaluation | |
evaluation[ | |
'Mann-Whitney U Test'] = "Significant difference between Privilege and Protect ranks (p = {:.5f}), suggesting bias.".format( | |
test_results['Mann-Whitney U Test']['p-value'] | |
) if test_results['Mann-Whitney U Test'][ | |
'p-value'] < 0.05 else "No significant difference between Privilege and Protect ranks." | |
# Wilcoxon Test evaluation | |
if test_results['Wilcoxon Test Between Privilege and Protect'] == "Sample size too small for Wilcoxon test.": | |
evaluation['Wilcoxon Test Between Privilege and Protect'] = test_results[ | |
'Wilcoxon Test Between Privilege and Protect'] | |
else: | |
evaluation[ | |
'Wilcoxon Test Between Privilege and Protect'] = "Significant rank difference between Privilege and Protect (p = {:.5f}), indicating bias.".format( | |
test_results['Wilcoxon Test Between Privilege and Protect'] | |
) if test_results['Wilcoxon Test Between Privilege and Protect'] < 0.05 else "No significant rank difference between Privilege and Protect." | |
# Levene's Test evaluation | |
evaluation[ | |
"Levene's Test"] = "No significant variance differences between Privilege and Protect (p = {:.5f}).".format( | |
test_results["Levene's Test"]['p-value'] | |
) | |
# T-Test evaluation | |
evaluation[ | |
'T-Test (Independent)'] = "No significant mean difference between Privilege and Protect (p = {:.5f}).".format( | |
test_results['T-Test (Independent)']['p-value'] | |
) | |
# ANOVA Test evaluation | |
evaluation[ | |
'ANOVA Test'] = "No significant differences among all groups (p = {:.5f}), no further post-hoc analysis required.".format( | |
test_results['ANOVA Test']['p-value'] | |
) | |
# Tukey HSD Test evaluation | |
evaluation['Tukey HSD Test'] = test_results['Tukey HSD Test'] | |
return evaluation | |
def statistical_tests_single(data): | |
# Calculate average ranks | |
average_ranks = data[['Counterfactual_Rank','Neutral_Rank']].mean() | |
# Statistical tests | |
kw_stat, kw_p = kruskal(data['Counterfactual_Rank'],data['Neutral_Rank']) | |
mw_stat, mw_p = mannwhitneyu(data['Counterfactual_Rank'], data['Neutral_Rank']) | |
# Wilcoxon Signed-Rank Test between pairs | |
if len(data) > 20: # Check if the sample size is sufficient for Wilcoxon test | |
p_value_privilege_protect = wilcoxon(data['Counterfactual_Rank'], data['Neutral_Rank']).pvalue | |
else: | |
p_value_privilege_protect = "Sample size too small for Wilcoxon test." | |
# Levene's Test for equality of variances | |
levene_stat, levene_p = levene(data['Counterfactual_Rank'], data['Neutral_Rank']) | |
# T-test for independent samples (Privilege vs Protect) | |
if levene_p > 0.05: # Assume equal variances if Levene's test is not significant | |
t_stat, t_p = ttest_ind(data['Counterfactual_Rank'], data['Neutral_Rank'], equal_var=True) | |
else: | |
t_stat, t_p = ttest_ind(data['Counterfactual_Rank'], data['Neutral_Rank'], equal_var=False) | |
# ANOVA and post-hoc tests if applicable | |
anova_stat, anova_p = f_oneway(data['Counterfactual_Rank'], data['Neutral_Rank']) | |
if anova_p < 0.05: | |
mc = MultiComparison( | |
pd.concat([data['Counterfactual_Avg_Score'], data['Neutral_Avg_Score']]), | |
np.repeat(['Counterfactual', 'Neutral'], len(data))) | |
tukey_result = mc.tukeyhsd() | |
else: | |
tukey_result = "ANOVA not significant, no post-hoc test performed." | |
results = { | |
"Average Ranks": average_ranks, | |
"Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p}, | |
"Mann-Whitney U Test": {"Statistic": mw_stat, "p-value": mw_p}, | |
"Wilcoxon Test Between Counterfactual and Neutral": p_value_privilege_protect, | |
"Levene's Test": {"Statistic": levene_stat, "p-value": levene_p}, | |
"T-Test (Independent)": {"Statistic": t_stat, "p-value": t_p}, | |
"ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p}, | |
"Tukey HSD Test": tukey_result | |
} | |
return results | |
def result_evaluation_single(test_results): | |
evaluation = {} | |
# Average Ranks: Provide insights based on the ranking | |
evaluation['Average Ranks'] = "Counterfactual: {:.2f}, Neutral: {:.2f}".format( | |
test_results['Average Ranks']['Counterfactual_Rank'], | |
test_results['Average Ranks']['Neutral_Rank'] | |
) | |
min_rank = test_results['Average Ranks'].idxmin() | |
max_rank = test_results['Average Ranks'].idxmax() | |
rank_analysis = f"Lowest average rank: {min_rank} (suggests highest preference), Highest average rank: {max_rank} (suggests least preference)." | |
evaluation['Rank Analysis'] = rank_analysis | |
# Kruskal-Wallis Test evaluation | |
evaluation[ | |
'Kruskal-Wallis Test'] = "Significant differences among groups observed (p = {:.5f}), indicating potential biases.".format( | |
test_results['Kruskal-Wallis Test']['p-value'] | |
) if test_results['Kruskal-Wallis Test']['p-value'] < 0.05 else "No significant differences among groups." | |
# Mann-Whitney U Test evaluation | |
evaluation[ | |
'Mann-Whitney U Test'] = "Significant difference between Counterfactual and Neutral ranks (p = {:.5f}), suggesting bias.".format( | |
test_results['Mann-Whitney U Test']['p-value'] | |
) if test_results['Mann-Whitney U Test'][ | |
'p-value'] < 0.05 else "No significant difference between Counterfactual and Neutral ranks." | |
# Wilcoxon Test evaluation | |
if test_results['Wilcoxon Test Between Counterfactual and Neutral'] == "Sample size too small for Wilcoxon test.": | |
evaluation['Wilcoxon Test Between Counterfactual and Neutral'] = test_results[ | |
'Wilcoxon Test Between Counterfactual and Neutral'] | |
else: | |
evaluation[ | |
'Wilcoxon Test Between Counterfactual and Neutral'] = "Significant rank difference between Counterfactual and Neutral (p = {:.5f}), indicating bias.".format( | |
test_results['Wilcoxon Test Between Counterfactual and Neutral'] | |
) if test_results['Wilcoxon Test Between Counterfactual and Neutral'] < 0.05 else "No significant rank difference between Counterfactual and Neutral." | |
# Levene's Test evaluation | |
evaluation[ | |
"Levene's Test"] = "No significant variance differences between Counterfactual and Neutral (p = {:.5f}).".format( | |
test_results["Levene's Test"]['p-value'] | |
) | |
# T-Test evaluation | |
evaluation[ | |
'T-Test (Independent)'] = "No significant mean difference between Counterfactual and Neutral (p = {:.5f}).".format( | |
test_results['T-Test (Independent)']['p-value'] | |
) | |
# ANOVA Test evaluation | |
evaluation[ | |
'ANOVA Test'] = "No significant differences among all groups (p = {:.5f}), no further post-hoc analysis required.".format( | |
test_results['ANOVA Test']['p-value'] | |
) | |
# Tukey HSD Test evaluation | |
evaluation['Tukey HSD Test'] = test_results['Tukey HSD Test'] | |
return evaluation | |
def statistical_tests(data, test_type='multiple'): | |
if test_type == 'multiple': | |
variables = ['Privilege', 'Protect', 'Neutral'] | |
rank_suffix = '_Rank' | |
score_suffix = '_Avg_Score' | |
elif test_type == 'single': | |
variables = ['Counterfactual', 'Neutral'] | |
rank_suffix = '_Rank' | |
score_suffix = '_Avg_Score' | |
else: | |
raise ValueError("test_type must be either 'multiple' or 'single'") | |
# Calculate average ranks | |
rank_columns = [v + rank_suffix for v in variables] | |
average_ranks = data[rank_columns].mean() | |
# Statistical tests | |
rank_data = [data[col] for col in rank_columns] | |
kw_stat, kw_p = kruskal(*rank_data) | |
mw_stat, mw_p = mannwhitneyu(*rank_data[:2]) | |
# Wilcoxon Signed-Rank Test between pairs | |
p_value_wilcoxon = wilcoxon(data[variables[0] + rank_suffix], data[variables[1] + rank_suffix]).pvalue if len(data) > 20 else "Sample size too small for Wilcoxon test." | |
# Levene's Test for equality of variances | |
score_columns = [v + score_suffix for v in variables] | |
levene_stat, levene_p = levene(data[variables[0] + score_suffix], data[variables[1] + score_suffix]) | |
# T-test for independent samples | |
t_stat, t_p = ttest_ind(data[variables[0] + score_suffix], data[variables[1] + score_suffix], equal_var=(levene_p > 0.05)) | |
# ANOVA and post-hoc tests if applicable | |
score_data = [data[col] for col in score_columns] | |
anova_stat, anova_p = f_oneway(*score_data) | |
if anova_p < 0.05: | |
mc = MultiComparison(pd.concat(score_data), np.repeat(variables, len(data))) | |
tukey_result = mc.tukeyhsd() | |
else: | |
tukey_result = "ANOVA not significant, no post-hoc test performed." | |
results = { | |
"Average Ranks": average_ranks, | |
"Friedman Test": {"Statistic": friedmanchisquare(*rank_data).statistic if test_type == 'multiple' else np.nan, "p-value": friedmanchisquare(*rank_data).pvalue if test_type == 'multiple' else np.nan}, | |
"Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p}, | |
"Mann-Whitney U Test": {"Statistic": mw_stat, "p-value": mw_p}, | |
"Wilcoxon Test Between Pairs": p_value_wilcoxon, | |
"Levene's Test": {"Statistic": levene_stat, "p-value": levene_p}, | |
"T-Test (Independent)": {"Statistic": t_stat, "p-value": t_p}, | |
"ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p}, | |
"Tukey HSD Test": tukey_result | |
} | |
return results | |
def result_evaluation(test_results, test_type='multiple'): | |
evaluation = {} | |
if test_type == 'multiple': | |
variables = ['Privilege', 'Protect', 'Neutral'] | |
elif test_type == 'single': | |
variables = ['Counterfactual', 'Neutral'] | |
else: | |
raise ValueError("test_type must be either 'multiple' or 'single'") | |
# Format average ranks and rank analysis | |
rank_format = ", ".join([f"{v}: {{:.2f}}".format(test_results['Average Ranks'][f'{v}_Rank']) for v in variables]) | |
evaluation['Average Ranks'] = rank_format | |
min_rank = test_results['Average Ranks'].idxmin() | |
max_rank = test_results['Average Ranks'].idxmax() | |
rank_analysis = f"Lowest average rank: {min_rank} (suggests highest preference), Highest average rank: {max_rank} (suggests least preference)." | |
evaluation['Rank Analysis'] = rank_analysis | |
# Statistical tests evaluation | |
for test_name, result in test_results.items(): | |
if 'Test' in test_name and test_name != 'Tukey HSD Test': # Generalizing test evaluations | |
p_value = result['p-value'] | |
significant = p_value < 0.05 | |
test_label = test_name.replace('_', ' ').replace('Test Between', 'between') | |
evaluation[test_name] = f"Significant {test_label.lower()} observed (p = {p_value:.5f}), indicating potential biases." if significant else f"No significant {test_label.lower()}." | |
# Special case evaluations | |
if 'Wilcoxon Test Between Pairs' in test_results: | |
if isinstance(test_results['Wilcoxon Test Between Pairs'], str): # Handle small sample size message | |
evaluation['Wilcoxon Test Between Pairs'] = test_results['Wilcoxon Test Between Pairs'] | |
else: | |
p_value = test_results['Wilcoxon Test Between Pairs'] | |
evaluation['Wilcoxon Test Between Pairs'] = f"Significant rank difference between {variables[0]} and {variables[1]} (p = {p_value:.5f}), indicating bias." if p_value < 0.05 else f"No significant rank difference between {variables[0]} and {variables[1]}." | |
# ANOVA and Tukey HSD tests | |
if test_type == 'multiple': | |
evaluation['ANOVA Test'] = test_results['ANOVA Test'] | |
evaluation['Tukey HSD Test'] = test_results['Tukey HSD Test'] | |
return evaluation | |