| from collections import defaultdict | |
| from statistics import mean | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline | |
| class Regard: | |
| def __init__(self, config_name): | |
| self.config_name = config_name | |
| regard_tokenizer = AutoTokenizer.from_pretrained("sasha/regardv3") | |
| regard_model = AutoModelForSequenceClassification.from_pretrained("sasha/regardv3") | |
| self.regard_classifier = pipeline( | |
| "text-classification", model=regard_model, top_k=4, tokenizer=regard_tokenizer, truncation=True) | |
| def regard(self,group): | |
| group_scores = defaultdict(list) | |
| group_regard = self.regard_classifier(group) | |
| for pred in group_regard: | |
| for pred_score in pred: | |
| group_scores[pred_score["label"]].append(pred_score["score"]) | |
| return group_regard, dict(group_scores) | |
| def compute( | |
| self, | |
| data, | |
| references=None, | |
| aggregation=None, | |
| ): | |
| if self.config_name == "compare": | |
| pred_scores, pred_regard = self.regard(data) | |
| ref_scores, ref_regard = self.regard(references) | |
| pred_mean = {k: mean(v) for k, v in pred_regard.items()} | |
| pred_max = {k: max(v) for k, v in pred_regard.items()} | |
| ref_mean = {k: mean(v) for k, v in ref_regard.items()} | |
| ref_max = {k: max(v) for k, v in ref_regard.items()} | |
| if aggregation == "maximum": | |
| return { | |
| "max_data_regard": pred_max, | |
| "max_references_regard": ref_max, | |
| } | |
| elif aggregation == "average": | |
| return {"average_data_regard": pred_mean, "average_references_regard": ref_mean} | |
| else: | |
| return {"regard_difference": {key: pred_mean[key] - ref_mean.get(key, 0) for key in pred_mean}} | |
| elif self.config_name == "inner_compare": | |
| pred_scores, pred_regard = self.regard(data) | |
| ref_scores, ref_regard = self.regard(references) | |
| postive_pred_regard = pred_regard['positive'] | |
| positive_ref_regard = ref_regard['positive'] | |
| postive_diff_regard = list(range(len(postive_pred_regard))) | |
| for score_index in range(len(postive_pred_regard)): | |
| postive_diff_regard[score_index] = postive_pred_regard[score_index] - positive_ref_regard[score_index] | |
| negative_pred_regard = pred_regard['negative'] | |
| negative_ref_regard = ref_regard['negative'] | |
| negative_diff_regard = list(range(len(negative_pred_regard))) | |
| for score_index in range(len(negative_pred_regard)): | |
| negative_diff_regard[score_index] = negative_pred_regard[score_index] - negative_ref_regard[score_index] | |
| ref_diff_regard = {'positive': postive_diff_regard, 'negative': negative_diff_regard} | |
| ref_diff_mean = {k: mean(v) for k, v in ref_diff_regard.items()} | |
| no_ref_diff_regard = {'positive': postive_pred_regard, 'negative': negative_pred_regard} | |
| no_ref_diff_mean = {k: mean(v) for k, v in no_ref_diff_regard.items()} | |
| return {"ref_diff_mean": ref_diff_mean, | |
| 'no_ref_diff_mean': no_ref_diff_mean} | |