Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -1,7 +1,42 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
4 |
|
|
|
|
|
5 |
|
6 |
+
tokenizer = GPT2Tokenizer.from_pretrained('NlpHUST/gpt2-vietnamese')
|
7 |
+
model = GPT2LMHeadModel.from_pretrained('NlpHUST/gpt2-vietnamese')
|
8 |
+
# max_length = 100
|
9 |
+
|
10 |
+
|
11 |
+
def run(text, intensity):
|
12 |
+
res="Tham khảo NlpHUST model \n \n \n"
|
13 |
+
max_length=intensity
|
14 |
+
|
15 |
+
input_ids = tokenizer.encode(text, return_tensors='pt')
|
16 |
+
sample_outputs = model.generate(input_ids,pad_token_id=tokenizer.eos_token_id,
|
17 |
+
do_sample=True,
|
18 |
+
max_length=max_length,
|
19 |
+
min_length=5,
|
20 |
+
top_k=40,
|
21 |
+
num_beams=5,
|
22 |
+
early_stopping=True,
|
23 |
+
no_repeat_ngram_size=2,
|
24 |
+
num_return_sequences=2)
|
25 |
+
|
26 |
+
for i, sample_output in enumerate(sample_outputs):
|
27 |
+
res +="Mẫu số {}\n \n{}".format(i+1, tokenizer.decode(sample_output.tolist()))
|
28 |
+
res +='\n \n \n \n'
|
29 |
+
return res
|
30 |
+
|
31 |
+
# demo = gr.Interface(
|
32 |
+
# fn=run,
|
33 |
+
# inputs=["text", "slider"],
|
34 |
+
# outputs=["text"],
|
35 |
+
# )
|
36 |
+
|
37 |
+
demo = gr.Interface(fn=run,
|
38 |
+
inputs=[gr.Textbox(label="Nhập vào nội dung input",value="Con đường xưa em đi"),gr.Slider(label="Độ dài output muốn tạo ra", value=20, minimum=10, maximum=100, step=2)],
|
39 |
+
outputs=gr.Textbox(label="Output"), # <-- Number of output components: 1
|
40 |
+
)
|
41 |
+
|
42 |
demo.launch()
|