|
from setuptools import setup, find_namespace_packages |
|
|
|
setup(name='nnunet', |
|
packages=find_namespace_packages(include=["nnunet", "nnunet.*"]), |
|
version='1.7.0', |
|
description='nnU-Net. Framework for out-of-the box biomedical image segmentation.', |
|
url='https://github.com/MIC-DKFZ/nnUNet', |
|
author='Division of Medical Image Computing, German Cancer Research Center', |
|
author_email='f.isensee@dkfz-heidelberg.de', |
|
license='Apache License Version 2.0, January 2004', |
|
install_requires=[ |
|
"torch>=1.6.0a", |
|
"tqdm", |
|
"dicom2nifti", |
|
"scikit-image>=0.14", |
|
"medpy", |
|
"scipy", |
|
"batchgenerators>=0.23", |
|
"numpy", |
|
"SimpleITK", |
|
"opencv-python~=4.7.0.72", |
|
"pandas", |
|
"requests", |
|
"nibabel", |
|
'tifffile', |
|
"plotly~=5.14.1", |
|
"scikit-learn~=1.2.2", |
|
"astropy~=5.2.2", |
|
"einops~=0.6.0", |
|
"matplotlib~=3.7.1", |
|
"h5py~=3.8.0", |
|
"fil-finder~=1.7.2", |
|
"psutil~=5.9.4", |
|
"image~=1.5.33" |
|
], |
|
entry_points={ |
|
'console_scripts': [ |
|
'nnUNet_convert_decathlon_task = nnunet.experiment_planning.nnUNet_convert_decathlon_task:main', |
|
'nnUNet_plan_and_preprocess = nnunet.experiment_planning.nnUNet_plan_and_preprocess:main', |
|
'nnUNet_train = nnunet.run.run_training:main', |
|
'nnUNet_train_DP = nnunet.run.run_training_DP:main', |
|
'nnUNet_train_DDP = nnunet.run.run_training_DDP:main', |
|
'nnUNet_predict = nnunet.inference.predict_simple:main', |
|
'nnUNet_ensemble = nnunet.inference.ensemble_predictions:main', |
|
'nnUNet_find_best_configuration = nnunet.evaluation.model_selection.figure_out_what_to_submit:main', |
|
'nnUNet_print_available_pretrained_models = nnunet.inference.pretrained_models.download_pretrained_model:print_available_pretrained_models', |
|
'nnUNet_print_pretrained_model_info = nnunet.inference.pretrained_models.download_pretrained_model:print_pretrained_model_requirements', |
|
'nnUNet_download_pretrained_model = nnunet.inference.pretrained_models.download_pretrained_model:download_by_name', |
|
'nnUNet_download_pretrained_model_by_url = nnunet.inference.pretrained_models.download_pretrained_model:download_by_url', |
|
'nnUNet_determine_postprocessing = nnunet.postprocessing.consolidate_postprocessing_simple:main', |
|
'nnUNet_export_model_to_zip = nnunet.inference.pretrained_models.collect_pretrained_models:export_entry_point', |
|
'nnUNet_install_pretrained_model_from_zip = nnunet.inference.pretrained_models.download_pretrained_model:install_from_zip_entry_point', |
|
'nnUNet_change_trainer_class = nnunet.inference.change_trainer:main', |
|
'nnUNet_evaluate_folder = nnunet.evaluation.evaluator:nnunet_evaluate_folder', |
|
'nnUNet_plot_task_pngs = nnunet.utilities.overlay_plots:entry_point_generate_overlay', |
|
], |
|
}, |
|
keywords=['deep learning', 'image segmentation', 'medical image analysis', |
|
'medical image segmentation', 'nnU-Net', 'nnunet'] |
|
) |
|
|