ho11laqe's picture
init
ecf08bc
raw
history blame
13.9 kB
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
from nnunet.inference.predict import predict_from_folder
from nnunet.paths import default_plans_identifier, network_training_output_dir, default_cascade_trainer, default_trainer
from batchgenerators.utilities.file_and_folder_operations import join, isdir
from nnunet.utilities.task_name_id_conversion import convert_id_to_task_name
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-i", '--input_folder', help="Must contain all modalities for each patient in the correct"
" order (same as training). Files must be named "
"CASENAME_XXXX.nii.gz where XXXX is the modality "
"identifier (0000, 0001, etc)", required=True)
parser.add_argument('-o', "--output_folder", required=True, help="folder for saving predictions")
parser.add_argument('-t', '--task_name', help='task name or task ID, required.',
default=default_plans_identifier, required=True)
parser.add_argument('-tr', '--trainer_class_name',
help='Name of the nnUNetTrainer used for 2D U-Net, full resolution 3D U-Net and low resolution '
'U-Net. The default is %s. If you are running inference with the cascade and the folder '
'pointed to by --lowres_segmentations does not contain the segmentation maps generated by '
'the low resolution U-Net then the low resolution segmentation maps will be automatically '
'generated. For this case, make sure to set the trainer class here that matches your '
'--cascade_trainer_class_name (this part can be ignored if defaults are used).'
% default_trainer,
required=False,
default=default_trainer)
parser.add_argument('-ctr', '--cascade_trainer_class_name',
help="Trainer class name used for predicting the 3D full resolution U-Net part of the cascade."
"Default is %s" % default_cascade_trainer, required=False,
default=default_cascade_trainer)
parser.add_argument('-m', '--model', help="2d, 3d_lowres, 3d_fullres or 3d_cascade_fullres. Default: 3d_fullres",
default="3d_fullres", required=False)
parser.add_argument('-p', '--plans_identifier', help='do not touch this unless you know what you are doing',
default=default_plans_identifier, required=False)
parser.add_argument('-f', '--folds', nargs='+', default='None',
help="folds to use for prediction. Default is None which means that folds will be detected "
"automatically in the model output folder")
parser.add_argument('-z', '--save_npz', required=False, action='store_true',
help="use this if you want to ensemble these predictions with those of other models. Softmax "
"probabilities will be saved as compressed numpy arrays in output_folder and can be "
"merged between output_folders with nnUNet_ensemble_predictions")
parser.add_argument('-l', '--lowres_segmentations', required=False, default='None',
help="if model is the highres stage of the cascade then you can use this folder to provide "
"predictions from the low resolution 3D U-Net. If this is left at default, the "
"predictions will be generated automatically (provided that the 3D low resolution U-Net "
"network weights are present")
parser.add_argument("--part_id", type=int, required=False, default=0, help="Used to parallelize the prediction of "
"the folder over several GPUs. If you "
"want to use n GPUs to predict this "
"folder you need to run this command "
"n times with --part_id=0, ... n-1 and "
"--num_parts=n (each with a different "
"GPU (for example via "
"CUDA_VISIBLE_DEVICES=X)")
parser.add_argument("--num_parts", type=int, required=False, default=1,
help="Used to parallelize the prediction of "
"the folder over several GPUs. If you "
"want to use n GPUs to predict this "
"folder you need to run this command "
"n times with --part_id=0, ... n-1 and "
"--num_parts=n (each with a different "
"GPU (via "
"CUDA_VISIBLE_DEVICES=X)")
parser.add_argument("--num_threads_preprocessing", required=False, default=6, type=int, help=
"Determines many background processes will be used for data preprocessing. Reduce this if you "
"run into out of memory (RAM) problems. Default: 6")
parser.add_argument("--num_threads_nifti_save", required=False, default=2, type=int, help=
"Determines many background processes will be used for segmentation export. Reduce this if you "
"run into out of memory (RAM) problems. Default: 2")
parser.add_argument("--disable_tta", required=False, default=False, action="store_true",
help="set this flag to disable test time data augmentation via mirroring. Speeds up inference "
"by roughly factor 4 (2D) or 8 (3D)")
parser.add_argument("--overwrite_existing", required=False, default=False, action="store_true",
help="Set this flag if the target folder contains predictions that you would like to overwrite")
parser.add_argument("--mode", type=str, default="normal", required=False, help="Hands off!")
parser.add_argument("--all_in_gpu", type=str, default="None", required=False, help="can be None, False or True. "
"Do not touch.")
parser.add_argument("--step_size", type=float, default=0.5, required=False, help="don't touch")
# parser.add_argument("--interp_order", required=False, default=3, type=int,
# help="order of interpolation for segmentations, has no effect if mode=fastest. Do not touch this.")
# parser.add_argument("--interp_order_z", required=False, default=0, type=int,
# help="order of interpolation along z is z is done differently. Do not touch this.")
# parser.add_argument("--force_separate_z", required=False, default="None", type=str,
# help="force_separate_z resampling. Can be None, True or False, has no effect if mode=fastest. "
# "Do not touch this.")
parser.add_argument('-chk',
help='checkpoint name, default: model_final_checkpoint',
required=False,
default='model_final_checkpoint')
parser.add_argument('--disable_mixed_precision', default=False, action='store_true', required=False,
help='Predictions are done with mixed precision by default. This improves speed and reduces '
'the required vram. If you want to disable mixed precision you can set this flag. Note '
'that yhis is not recommended (mixed precision is ~2x faster!)')
parser.add_argument('-model_folder_name', default=False, required=False,
help='Path to the pretrained model.')
args = parser.parse_args()
input_folder = args.input_folder
output_folder = args.output_folder
part_id = args.part_id
num_parts = args.num_parts
folds = args.folds
save_npz = args.save_npz
lowres_segmentations = args.lowres_segmentations
num_threads_preprocessing = args.num_threads_preprocessing
num_threads_nifti_save = args.num_threads_nifti_save
disable_tta = args.disable_tta
step_size = args.step_size
# interp_order = args.interp_order
# interp_order_z = args.interp_order_z
# force_separate_z = args.force_separate_z
overwrite_existing = args.overwrite_existing
mode = args.mode
all_in_gpu = args.all_in_gpu
model = args.model
trainer_class_name = args.trainer_class_name
cascade_trainer_class_name = args.cascade_trainer_class_name
model_folder_name = args.model_folder_name
task_name = args.task_name
if not task_name.startswith("Task"):
task_id = int(task_name)
task_name = convert_id_to_task_name(task_id)
assert model in ["2d", "3d_lowres", "3d_fullres", "3d_cascade_fullres"], "-m must be 2d, 3d_lowres, 3d_fullres or " \
"3d_cascade_fullres"
# if force_separate_z == "None":
# force_separate_z = None
# elif force_separate_z == "False":
# force_separate_z = False
# elif force_separate_z == "True":
# force_separate_z = True
# else:
# raise ValueError("force_separate_z must be None, True or False. Given: %s" % force_separate_z)
if lowres_segmentations == "None":
lowres_segmentations = None
if isinstance(folds, list):
if folds[0] == 'all' and len(folds) == 1:
pass
else:
folds = [int(i) for i in folds]
elif folds == "None":
folds = None
else:
raise ValueError("Unexpected value for argument folds")
assert all_in_gpu in ['None', 'False', 'True']
if all_in_gpu == "None":
all_in_gpu = None
elif all_in_gpu == "True":
all_in_gpu = True
elif all_in_gpu == "False":
all_in_gpu = False
# we need to catch the case where model is 3d cascade fullres and the low resolution folder has not been set.
# In that case we need to try and predict with 3d low res first
if model == "3d_cascade_fullres" and lowres_segmentations is None:
print("lowres_segmentations is None. Attempting to predict 3d_lowres first...")
assert part_id == 0 and num_parts == 1, "if you don't specify a --lowres_segmentations folder for the " \
"inference of the cascade, custom values for part_id and num_parts " \
"are not supported. If you wish to have multiple parts, please " \
"run the 3d_lowres inference first (separately)"
model_folder_name = join(network_training_output_dir, "3d_lowres", task_name, trainer_class_name + "__" +
args.plans_identifier)
assert isdir(model_folder_name), "model output folder not found. Expected: %s" % model_folder_name
lowres_output_folder = join(output_folder, "3d_lowres_predictions")
predict_from_folder(model_folder_name, input_folder, lowres_output_folder, folds, False,
num_threads_preprocessing, num_threads_nifti_save, None, part_id, num_parts, not disable_tta,
overwrite_existing=overwrite_existing, mode=mode, overwrite_all_in_gpu=all_in_gpu,
mixed_precision=not args.disable_mixed_precision,
step_size=step_size)
lowres_segmentations = lowres_output_folder
torch.cuda.empty_cache()
print("3d_lowres done")
if model == "3d_cascade_fullres":
trainer = cascade_trainer_class_name
else:
trainer = trainer_class_name
if model_folder_name == False:
model_folder_name = join(network_training_output_dir, model, task_name, trainer + "__" +
args.plans_identifier)
print("using model stored in ", model_folder_name)
assert isdir(model_folder_name), "model output folder not found. Expected: %s" % model_folder_name
print(model_folder_name)
predict_from_folder(model_folder_name, input_folder, output_folder, folds, save_npz, num_threads_preprocessing,
num_threads_nifti_save, lowres_segmentations, part_id, num_parts, not disable_tta,
overwrite_existing=overwrite_existing, mode=mode, overwrite_all_in_gpu=all_in_gpu,
mixed_precision=not args.disable_mixed_precision,
step_size=step_size, checkpoint_name=args.chk)
if __name__ == "__main__":
main()