ho11laqe's picture
init
ecf08bc
from skimage import io
import cv2
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
import argparse
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-data_path",
help="percentage of the dataset used for training validation and test")
args = parser.parse_args()
data_path = args.data_path
output_path = join(data_path, 'zone_fronts')
train_front_path = join(data_path, 'fronts_dilated_5', 'train')
test_front_path = join(data_path, 'fronts_dilated_5', 'test')
train_zone_path = join(data_path, 'zones', 'train')
test_zone_path = join(data_path, 'zones', 'test')
train_output_path = join(output_path, 'train')
test_output_path = join(output_path, 'test')
maybe_mkdir_p(output_path)
maybe_mkdir_p(train_output_path)
maybe_mkdir_p(test_output_path)
kernel = np.ones((5, 5), 'uint8')
# Train
for train_file in os.listdir(train_front_path):
print(train_file)
# load image
front_path = join(train_front_path, train_file)
zone_path = join(train_zone_path, train_file[:-len('front.png')]+'zones.png')
front = io.imread(front_path)
zone = io.imread(zone_path)
zone[front==255] = 32
# store image
output_file_path = join(train_output_path, train_file[:-len('front.png')]+'.png')
io.imsave(output_file_path, zone)
for test_file in os.listdir(test_front_path):
print(test_file)
# load image
front_path = join(test_front_path, test_file)
zone_path = join(test_zone_path, test_file[:-len('front.png')] + 'zones.png')
front = io.imread(front_path)
zone = io.imread(zone_path)
zone[front == 255] = 32
# store image
output_file_path = join(test_output_path, test_file[:-len('front.png')] + '.png')
io.imsave(output_file_path, zone)