ho11laqe's picture
init
ecf08bc
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.network_architecture.generic_UNet_DP import Generic_UNet_DP
from nnunet.training.data_augmentation.data_augmentation_moreDA import get_moreDA_augmentation
from nnunet.training.network_training.nnUNetTrainerV2 import nnUNetTrainerV2
from nnunet.utilities.to_torch import maybe_to_torch, to_cuda
from nnunet.network_architecture.initialization import InitWeights_He
from nnunet.network_architecture.neural_network import SegmentationNetwork
from nnunet.training.dataloading.dataset_loading import unpack_dataset
from nnunet.training.network_training.nnUNetTrainer import nnUNetTrainer
from nnunet.utilities.nd_softmax import softmax_helper
from torch import nn
from torch.cuda.amp import autocast
from torch.nn.parallel.data_parallel import DataParallel
class nnUNetTrainerV2_DP(nnUNetTrainerV2):
def __init__(self, plans_file, fold, output_folder=None, dataset_directory=None, batch_dice=True, stage=None,
unpack_data=True, deterministic=True, num_gpus=1, distribute_batch_size=False, fp16=False):
super(nnUNetTrainerV2_DP, self).__init__(plans_file, fold, output_folder, dataset_directory, batch_dice, stage,
unpack_data, deterministic, fp16)
self.init_args = (plans_file, fold, output_folder, dataset_directory, batch_dice, stage, unpack_data,
deterministic, num_gpus, distribute_batch_size, fp16)
self.num_gpus = num_gpus
self.distribute_batch_size = distribute_batch_size
self.dice_smooth = 1e-5
self.dice_do_BG = False
self.loss = None
self.loss_weights = None
def setup_DA_params(self):
super(nnUNetTrainerV2_DP, self).setup_DA_params()
self.data_aug_params['num_threads'] = 8 * self.num_gpus
def process_plans(self, plans):
super(nnUNetTrainerV2_DP, self).process_plans(plans)
if not self.distribute_batch_size:
self.batch_size = self.num_gpus * self.plans['plans_per_stage'][self.stage]['batch_size']
else:
if self.batch_size < self.num_gpus:
print("WARNING: self.batch_size < self.num_gpus. Will not be able to use the GPUs well")
elif self.batch_size % self.num_gpus != 0:
print("WARNING: self.batch_size % self.num_gpus != 0. Will not be able to use the GPUs well")
def initialize(self, training=True, force_load_plans=False):
"""
- replaced get_default_augmentation with get_moreDA_augmentation
- only run this code once
- loss function wrapper for deep supervision
:param training:
:param force_load_plans:
:return:
"""
if not self.was_initialized:
maybe_mkdir_p(self.output_folder)
if force_load_plans or (self.plans is None):
self.load_plans_file()
self.process_plans(self.plans)
self.setup_DA_params()
################# Here configure the loss for deep supervision ############
net_numpool = len(self.net_num_pool_op_kernel_sizes)
weights = np.array([1 / (2 ** i) for i in range(net_numpool)])
mask = np.array([True if i < net_numpool - 1 else False for i in range(net_numpool)])
weights[~mask] = 0
weights = weights / weights.sum()
self.loss_weights = weights
################# END ###################
self.folder_with_preprocessed_data = join(self.dataset_directory, self.plans['data_identifier'] +
"_stage%d" % self.stage)
if training:
self.dl_tr, self.dl_val = self.get_basic_generators()
if self.unpack_data:
print("unpacking dataset")
unpack_dataset(self.folder_with_preprocessed_data)
print("done")
else:
print(
"INFO: Not unpacking data! Training may be slow due to that. Pray you are not using 2d or you "
"will wait all winter for your model to finish!")
self.tr_gen, self.val_gen = get_moreDA_augmentation(self.dl_tr, self.dl_val,
self.data_aug_params[
'patch_size_for_spatialtransform'],
self.data_aug_params,
deep_supervision_scales=self.deep_supervision_scales,
pin_memory=self.pin_memory)
self.print_to_log_file("TRAINING KEYS:\n %s" % (str(self.dataset_tr.keys())),
also_print_to_console=False)
self.print_to_log_file("VALIDATION KEYS:\n %s" % (str(self.dataset_val.keys())),
also_print_to_console=False)
else:
pass
self.initialize_network()
self.initialize_optimizer_and_scheduler()
assert isinstance(self.network, (SegmentationNetwork, DataParallel))
else:
self.print_to_log_file('self.was_initialized is True, not running self.initialize again')
self.was_initialized = True
def initialize_network(self):
"""
replace genericUNet with the implementation of above for super speeds
"""
if self.threeD:
conv_op = nn.Conv3d
dropout_op = nn.Dropout3d
norm_op = nn.InstanceNorm3d
else:
conv_op = nn.Conv2d
dropout_op = nn.Dropout2d
norm_op = nn.InstanceNorm2d
norm_op_kwargs = {'eps': 1e-5, 'affine': True}
dropout_op_kwargs = {'p': 0, 'inplace': True}
net_nonlin = nn.LeakyReLU
net_nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
self.network = Generic_UNet_DP(self.num_input_channels, self.base_num_features, self.num_classes,
len(self.net_num_pool_op_kernel_sizes),
self.conv_per_stage, 2, conv_op, norm_op, norm_op_kwargs, dropout_op, dropout_op_kwargs,
net_nonlin, net_nonlin_kwargs, True, False, InitWeights_He(1e-2),
self.net_num_pool_op_kernel_sizes, self.net_conv_kernel_sizes, False, True, True)
if torch.cuda.is_available():
self.network.cuda()
self.network.inference_apply_nonlin = softmax_helper
def initialize_optimizer_and_scheduler(self):
assert self.network is not None, "self.initialize_network must be called first"
self.optimizer = torch.optim.SGD(self.network.parameters(), self.initial_lr, weight_decay=self.weight_decay,
momentum=0.99, nesterov=True)
self.lr_scheduler = None
def run_training(self):
self.maybe_update_lr(self.epoch)
# amp must be initialized before DP
ds = self.network.do_ds
self.network.do_ds = True
self.network = DataParallel(self.network, tuple(range(self.num_gpus)), )
ret = nnUNetTrainer.run_training(self)
self.network = self.network.module
self.network.do_ds = ds
return ret
def run_iteration(self, data_generator, do_backprop=True, run_online_evaluation=False):
data_dict = next(data_generator)
data = data_dict['data']
target = data_dict['target']
data = maybe_to_torch(data)
target = maybe_to_torch(target)
if torch.cuda.is_available():
data = to_cuda(data)
target = to_cuda(target)
self.optimizer.zero_grad()
if self.fp16:
with autocast():
ret = self.network(data, target, return_hard_tp_fp_fn=run_online_evaluation)
if run_online_evaluation:
ces, tps, fps, fns, tp_hard, fp_hard, fn_hard = ret
self.run_online_evaluation(tp_hard, fp_hard, fn_hard)
else:
ces, tps, fps, fns = ret
del data, target
l = self.compute_loss(ces, tps, fps, fns)
if do_backprop:
self.amp_grad_scaler.scale(l).backward()
self.amp_grad_scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(self.network.parameters(), 12)
self.amp_grad_scaler.step(self.optimizer)
self.amp_grad_scaler.update()
else:
ret = self.network(data, target, return_hard_tp_fp_fn=run_online_evaluation)
if run_online_evaluation:
ces, tps, fps, fns, tp_hard, fp_hard, fn_hard = ret
self.run_online_evaluation(tp_hard, fp_hard, fn_hard)
else:
ces, tps, fps, fns = ret
del data, target
l = self.compute_loss(ces, tps, fps, fns)
if do_backprop:
l.backward()
torch.nn.utils.clip_grad_norm_(self.network.parameters(), 12)
self.optimizer.step()
return l.detach().cpu().numpy()
def run_online_evaluation(self, tp_hard, fp_hard, fn_hard):
tp_hard = tp_hard.detach().cpu().numpy().mean(0)
fp_hard = fp_hard.detach().cpu().numpy().mean(0)
fn_hard = fn_hard.detach().cpu().numpy().mean(0)
self.online_eval_foreground_dc.append(list((2 * tp_hard) / (2 * tp_hard + fp_hard + fn_hard + 1e-8)))
self.online_eval_tp.append(list(tp_hard))
self.online_eval_fp.append(list(fp_hard))
self.online_eval_fn.append(list(fn_hard))
def compute_loss(self, ces, tps, fps, fns):
# we now need to effectively reimplement the loss
loss = None
for i in range(len(ces)):
if not self.dice_do_BG:
tp = tps[i][:, 1:]
fp = fps[i][:, 1:]
fn = fns[i][:, 1:]
else:
tp = tps[i]
fp = fps[i]
fn = fns[i]
if self.batch_dice:
tp = tp.sum(0)
fp = fp.sum(0)
fn = fn.sum(0)
else:
pass
nominator = 2 * tp + self.dice_smooth
denominator = 2 * tp + fp + fn + self.dice_smooth
dice_loss = (- nominator / denominator).mean()
if loss is None:
loss = self.loss_weights[i] * (ces[i].mean() + dice_loss)
else:
loss += self.loss_weights[i] * (ces[i].mean() + dice_loss)
###########
return loss