|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict |
|
import SimpleITK as sitk |
|
from batchgenerators.utilities.file_and_folder_operations import * |
|
|
|
|
|
def export_for_submission(source_dir, target_dir): |
|
""" |
|
promise wants mhd :-/ |
|
:param source_dir: |
|
:param target_dir: |
|
:return: |
|
""" |
|
files = subfiles(source_dir, suffix=".nii.gz", join=False) |
|
target_files = [join(target_dir, i[:-7] + ".mhd") for i in files] |
|
maybe_mkdir_p(target_dir) |
|
for f, t in zip(files, target_files): |
|
img = sitk.ReadImage(join(source_dir, f)) |
|
sitk.WriteImage(img, t) |
|
|
|
|
|
if __name__ == "__main__": |
|
folder = "/media/fabian/My Book/datasets/promise2012" |
|
out_folder = "/media/fabian/My Book/MedicalDecathlon/MedicalDecathlon_raw_splitted/Task024_Promise" |
|
|
|
maybe_mkdir_p(join(out_folder, "imagesTr")) |
|
maybe_mkdir_p(join(out_folder, "imagesTs")) |
|
maybe_mkdir_p(join(out_folder, "labelsTr")) |
|
|
|
current_dir = join(folder, "train") |
|
segmentations = subfiles(current_dir, suffix="segmentation.mhd") |
|
raw_data = [i for i in subfiles(current_dir, suffix="mhd") if not i.endswith("segmentation.mhd")] |
|
for i in raw_data: |
|
out_fname = join(out_folder, "imagesTr", i.split("/")[-1][:-4] + "_0000.nii.gz") |
|
sitk.WriteImage(sitk.ReadImage(i), out_fname) |
|
for i in segmentations: |
|
out_fname = join(out_folder, "labelsTr", i.split("/")[-1][:-17] + ".nii.gz") |
|
sitk.WriteImage(sitk.ReadImage(i), out_fname) |
|
|
|
|
|
current_dir = join(folder, "test") |
|
test_data = subfiles(current_dir, suffix="mhd") |
|
for i in test_data: |
|
out_fname = join(out_folder, "imagesTs", i.split("/")[-1][:-4] + "_0000.nii.gz") |
|
sitk.WriteImage(sitk.ReadImage(i), out_fname) |
|
|
|
|
|
json_dict = OrderedDict() |
|
json_dict['name'] = "PROMISE12" |
|
json_dict['description'] = "prostate" |
|
json_dict['tensorImageSize'] = "4D" |
|
json_dict['reference'] = "see challenge website" |
|
json_dict['licence'] = "see challenge website" |
|
json_dict['release'] = "0.0" |
|
json_dict['modality'] = { |
|
"0": "MRI", |
|
} |
|
json_dict['labels'] = { |
|
"0": "background", |
|
"1": "prostate" |
|
} |
|
json_dict['numTraining'] = len(raw_data) |
|
json_dict['numTest'] = len(test_data) |
|
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i.split("/")[-1][:-4], "label": "./labelsTr/%s.nii.gz" % i.split("/")[-1][:-4]} for i in |
|
raw_data] |
|
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i.split("/")[-1][:-4] for i in test_data] |
|
|
|
save_json(json_dict, os.path.join(out_folder, "dataset.json")) |
|
|
|
|