ho11laqe's picture
init
ecf08bc
raw
history blame
1.62 kB
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from torch import nn
def sum_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.sum(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.sum(int(ax))
return inp
def mean_tensor(inp, axes, keepdim=False):
axes = np.unique(axes).astype(int)
if keepdim:
for ax in axes:
inp = inp.mean(int(ax), keepdim=True)
else:
for ax in sorted(axes, reverse=True):
inp = inp.mean(int(ax))
return inp
def flip(x, dim):
"""
flips the tensor at dimension dim (mirroring!)
:param x:
:param dim:
:return:
"""
indices = [slice(None)] * x.dim()
indices[dim] = torch.arange(x.size(dim) - 1, -1, -1,
dtype=torch.long, device=x.device)
return x[tuple(indices)]