|
import numpy as np |
|
import pandas as pd |
|
import plotly.express as px |
|
import plotly.graph_objects as go |
|
import plotly.io as pio |
|
pio.kaleido.scope.mathjax = None |
|
import os |
|
import json |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
experiments = ['Task501_Glacier_front', |
|
'Task502_Glacier_zone', |
|
'Task503_Glacier_mtl_early', |
|
'Task503_Glacier_mtl_late', |
|
'Task505_Glacier_mtl_boundary', |
|
'Task500_Glacier_zonefronts'] |
|
data_dir = '/home/ho11laqe/Desktop/nnUNet_results/Final_Eval/' |
|
|
|
zone_mean = {} |
|
front_mean = {} |
|
for experiment in experiments: |
|
print(experiment) |
|
zone_mean_exp = [] |
|
front_mean_exp = [] |
|
|
|
for fold in range(5): |
|
|
|
results_json_path = os.path.join(data_dir, experiment, 'fold_' + str(fold), 'pngs', |
|
'eval_results.json') |
|
if not os.path.exists(results_json_path): |
|
results_json_path = os.path.join(data_dir, experiment, 'fold_' + str(fold), 'eval_results.json') |
|
|
|
with open(results_json_path, 'r') as f: |
|
result = json.load(f) |
|
|
|
if 'Front_Delineation' in result.keys(): |
|
|
|
front_mean_exp.append(result['Front_Delineation']['Result_all']['mean']) |
|
else: |
|
front_mean_exp.append(0) |
|
|
|
if 'Zone_Delineation' in result.keys(): |
|
zone_mean_exp.append(result['Zone_Delineation']['Result_all']['mean']) |
|
else: |
|
zone_mean_exp.append(0) |
|
|
|
print(np.mean(zone_mean_exp), np.std(zone_mean_exp)) |
|
print(np.mean(front_mean_exp), np.std(front_mean_exp)) |
|
zone_mean[experiment] = zone_mean_exp |
|
front_mean[experiment] = front_mean_exp |
|
|
|
for exp1 in experiments: |
|
for exp2 in experiments: |
|
|
|
mean1 = np.mean(front_mean[exp1]) |
|
var1 = np.var (front_mean[exp1]) |
|
mean2 = np.mean(front_mean[exp2]) |
|
var2 = np.var(front_mean[exp2]) |
|
|
|
T_front = abs(mean1 - mean2) / np.sqrt((var1 / 5) + (var2 / 5)) |
|
print(exp1 + '<>' +exp2) |
|
print('Tfront:'+ str(T_front)) |
|
|
|
|
|
mean1 = np.mean(zone_mean[exp1]) |
|
var1 = np.var(zone_mean[exp1]) |
|
mean2 = np.mean(zone_mean[exp2]) |
|
var2 = np.var(zone_mean[exp2]) |
|
|
|
T_zone = abs(mean1 - mean2) / np.sqrt((var1 / 5) + (var2 / 5)) |
|
print('Tzone:' + str(T_zone)) |
|
print('') |
|
""" |
|
box_width = 0.8 |
|
fig = px.box(None, points="all", template="plotly_white", width=600, height=500) |
|
|
|
fig.add_trace(go.Box(y=zone_mean['Task502_Glacier_zone'], name='Zone<br> STL', width=box_width, |
|
line_color='black', fillcolor='LightBlue ', pointpos=0, boxpoints='all', boxmean=True)) |
|
fig.add_trace(go.Box(y=zone_mean['Task503_Glacier_mtl_early'], name='Early Zone <br>MTL', width=box_width, |
|
line_color='black', fillcolor='YellowGreen', pointpos=0, boxpoints='all', |
|
boxmean=True, )) |
|
fig.add_trace(go.Box(y=zone_mean['Task503_Glacier_mtl_late'], name='Late Zone<br> MTL', width=box_width, |
|
line_color='black', fillcolor='#e1e400', pointpos=0, boxpoints='all', boxmean=True)) |
|
fig.add_trace( |
|
go.Box(y=zone_mean['Task505_Glacier_mtl_boundary'], name='Boundary <br>Zone MTL', width=box_width, |
|
line_color='black', fillcolor='gold', pointpos=0, boxpoints='all', boxmean=True)) |
|
|
|
fig.update_layout(showlegend=False, font=dict(family="Times New Roman", size=18)) |
|
fig.update_yaxes(title='Front mean') |
|
# fig.show() |
|
fig.write_image('Front mean' + ".pdf", format='pdf') |
|
""" |