|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict |
|
from nnunet.paths import nnUNet_raw_data |
|
from batchgenerators.utilities.file_and_folder_operations import * |
|
import shutil |
|
import SimpleITK as sitk |
|
|
|
|
|
def convert_for_submission(source_dir, target_dir): |
|
""" |
|
I believe they want .nii, not .nii.gz |
|
:param source_dir: |
|
:param target_dir: |
|
:return: |
|
""" |
|
files = subfiles(source_dir, suffix=".nii.gz", join=False) |
|
maybe_mkdir_p(target_dir) |
|
for f in files: |
|
img = sitk.ReadImage(join(source_dir, f)) |
|
out_file = join(target_dir, f[:-7] + ".nii") |
|
sitk.WriteImage(img, out_file) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
base = "/media/fabian/DeepLearningData/SegTHOR" |
|
|
|
task_id = 55 |
|
task_name = "SegTHOR" |
|
|
|
foldername = "Task%03.0d_%s" % (task_id, task_name) |
|
|
|
out_base = join(nnUNet_raw_data, foldername) |
|
imagestr = join(out_base, "imagesTr") |
|
imagests = join(out_base, "imagesTs") |
|
labelstr = join(out_base, "labelsTr") |
|
maybe_mkdir_p(imagestr) |
|
maybe_mkdir_p(imagests) |
|
maybe_mkdir_p(labelstr) |
|
|
|
train_patient_names = [] |
|
test_patient_names = [] |
|
train_patients = subfolders(join(base, "train"), join=False) |
|
for p in train_patients: |
|
curr = join(base, "train", p) |
|
label_file = join(curr, "GT.nii.gz") |
|
image_file = join(curr, p + ".nii.gz") |
|
shutil.copy(image_file, join(imagestr, p + "_0000.nii.gz")) |
|
shutil.copy(label_file, join(labelstr, p + ".nii.gz")) |
|
train_patient_names.append(p) |
|
|
|
test_patients = subfiles(join(base, "test"), join=False, suffix=".nii.gz") |
|
for p in test_patients: |
|
p = p[:-7] |
|
curr = join(base, "test") |
|
image_file = join(curr, p + ".nii.gz") |
|
shutil.copy(image_file, join(imagests, p + "_0000.nii.gz")) |
|
test_patient_names.append(p) |
|
|
|
|
|
json_dict = OrderedDict() |
|
json_dict['name'] = "SegTHOR" |
|
json_dict['description'] = "SegTHOR" |
|
json_dict['tensorImageSize'] = "4D" |
|
json_dict['reference'] = "see challenge website" |
|
json_dict['licence'] = "see challenge website" |
|
json_dict['release'] = "0.0" |
|
json_dict['modality'] = { |
|
"0": "CT", |
|
} |
|
json_dict['labels'] = { |
|
"0": "background", |
|
"1": "esophagus", |
|
"2": "heart", |
|
"3": "trachea", |
|
"4": "aorta", |
|
} |
|
json_dict['numTraining'] = len(train_patient_names) |
|
json_dict['numTest'] = len(test_patient_names) |
|
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i.split("/")[-1], "label": "./labelsTr/%s.nii.gz" % i.split("/")[-1]} for i in |
|
train_patient_names] |
|
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i.split("/")[-1] for i in test_patient_names] |
|
|
|
save_json(json_dict, os.path.join(out_base, "dataset.json")) |
|
|