Spaces:
Running
Running
import gradio as gr | |
import gc | |
import os | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" | |
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU only | |
import uuid | |
import threading | |
import pandas as pd | |
import torch | |
from langchain.document_loaders import CSVLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import HuggingFacePipeline | |
from langchain.chains import LLMChain | |
from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, BitsAndBytesConfig, pipeline | |
from langchain.prompts import PromptTemplate | |
from llama_cpp import Llama | |
import re | |
import datetime | |
import warnings | |
warnings.filterwarnings('ignore') | |
# Global model cache | |
MODEL_CACHE = { | |
"model": None, | |
"tokenizer": None, | |
"init_lock": threading.Lock(), | |
"model_name": None | |
} | |
# Create directories for user data | |
os.makedirs("user_data", exist_ok=True) | |
os.makedirs("performance_metrics", exist_ok=True) | |
# Model configuration dictionary | |
MODEL_CONFIG = { | |
"Llama 2 Chat": { | |
"name": "TheBloke/Llama-2-7B-Chat-GGUF", | |
"description": "Llama 2 7B Chat model with good general performance", | |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
}, | |
"TinyLlama Chat": { | |
"name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", | |
"description": "Lightweight model with 1.1B parameters, fast and efficient", | |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
}, | |
"Mistral Instruct": { | |
"name": "TheBloke/Mistral-7B-Instruct-v0.2-GGUF", | |
"description": "7B instruction-tuned model with excellent reasoning", | |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
}, | |
"Phi-4 Mini Instruct": { | |
"name": "microsoft/Phi-4-mini-instruct", | |
"description": "Lightweight model from Microsoft suitable for instructional tasks", | |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
}, | |
"DeepSeek Coder Instruct": { | |
"name": "deepseek-ai/deepseek-coder-1.3b-instruct", | |
"description": "1.3B model for code and data analysis", | |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
}, | |
"DeepSeek Lite Chat": { | |
"name": "deepseek-ai/DeepSeek-V2-Lite-Chat", | |
"description": "Light but powerful chat model from DeepSeek", | |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
}, | |
"Qwen2.5 Coder Instruct": { | |
"name": "Qwen/Qwen2.5-Coder-3B-Instruct-GGUF", | |
"description": "3B model specialized for code and technical applications", | |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
}, | |
"DeepSeek Distill Qwen": { | |
"name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", | |
"description": "1.5B distilled model with good balance of speed and quality", | |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
}, | |
"Flan T5 Small": { | |
"name": "google/flan-t5-small", | |
"description": "Lightweight T5 model optimized for instruction following", | |
"dtype": torch.float16 if torch.cuda.is_available() else torch.float32, | |
"is_t5": True | |
} | |
} | |
# Performance metrics tracking | |
class PerformanceTracker: | |
def __init__(self): | |
self.metrics_file = "performance_metrics/model_performance.csv" | |
# Create metrics file if it doesn't exist | |
if not os.path.exists(self.metrics_file): | |
with open(self.metrics_file, "w") as f: | |
f.write("timestamp,model,question,processing_time,response_length\n") | |
def log_performance(self, model_name, question, processing_time, response): | |
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
response_length = len(response) | |
with open(self.metrics_file, "a") as f: | |
f.write(f'"{timestamp}","{model_name}","{question}",{processing_time},{response_length}\n') | |
print(f"Logged performance for {model_name}: {processing_time:.2f}s") | |
# Initialize performance tracker | |
performance_tracker = PerformanceTracker() | |
def initialize_model_once(model_key): | |
with MODEL_CACHE["init_lock"]: | |
current_model = MODEL_CACHE["model_name"] | |
if MODEL_CACHE["model"] is None or current_model != model_key: | |
# Clear previous model | |
if MODEL_CACHE["model"] is not None: | |
del MODEL_CACHE["model"] | |
if MODEL_CACHE["tokenizer"] is not None: | |
del MODEL_CACHE["tokenizer"] | |
torch.cuda.empty_cache() if torch.cuda.is_available() else None | |
model_info = MODEL_CONFIG[model_key] | |
model_name = model_info["name"] | |
MODEL_CACHE["model_name"] = model_key | |
try: | |
print(f"Loading model: {model_name}") | |
# Check if this is a GGUF model | |
if "GGUF" in model_name: | |
# Download the model file first if it doesn't exist | |
from huggingface_hub import hf_hub_download | |
try: | |
# Try to find the GGUF file in the repo | |
repo_id = model_name | |
model_path = hf_hub_download( | |
repo_id=repo_id, | |
filename="model.gguf" # File name may differ | |
) | |
except Exception as e: | |
print(f"Couldn't find model.gguf, trying other filenames: {str(e)}") | |
# Try to find GGUF file with other names | |
import requests | |
from huggingface_hub import list_repo_files | |
files = list_repo_files(repo_id) | |
gguf_files = [f for f in files if f.endswith('.gguf')] | |
if not gguf_files: | |
raise ValueError(f"No GGUF files found in {repo_id}") | |
# Use first GGUF file found | |
model_path = hf_hub_download(repo_id=repo_id, filename=gguf_files[0]) | |
# Load GGUF model with llama-cpp-python | |
MODEL_CACHE["model"] = Llama( | |
model_path=model_path, | |
n_ctx=2048, # Smaller context for memory savings | |
n_batch=512, | |
n_threads=2 # Adjust for 2 vCPU | |
) | |
MODEL_CACHE["tokenizer"] = None # GGUF doesn't need separate tokenizer | |
MODEL_CACHE["is_gguf"] = True | |
# Handle T5 models | |
elif model_info.get("is_t5", False): | |
MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name) | |
MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained( | |
model_name, | |
torch_dtype=model_info["dtype"], | |
device_map="auto" if torch.cuda.is_available() else None, | |
low_cpu_mem_usage=True | |
) | |
MODEL_CACHE["is_gguf"] = False | |
# Handle standard HF models | |
else: | |
# Only use quantization if CUDA is available | |
if torch.cuda.is_available(): | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True | |
) | |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=quantization_config, | |
torch_dtype=model_info["dtype"], | |
device_map="auto", | |
low_cpu_mem_usage=True, | |
trust_remote_code=True | |
) | |
else: | |
# For CPU-only environments, load without quantization | |
MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float32, # Use float32 for CPU | |
device_map=None, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True | |
) | |
MODEL_CACHE["is_gguf"] = False | |
print(f"Model {model_name} loaded successfully") | |
except Exception as e: | |
import traceback | |
print(f"Error loading model {model_name}: {str(e)}") | |
print(traceback.format_exc()) | |
raise RuntimeError(f"Failed to load model {model_name}: {str(e)}") | |
return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], MODEL_CACHE.get("is_gguf", False) | |
def create_llm_pipeline(model_key): | |
"""Create a new pipeline using the specified model""" | |
try: | |
print(f"Creating pipeline for model: {model_key}") | |
tokenizer, model, is_gguf = initialize_model_once(model_key) | |
# Get the model info for reference | |
model_info = MODEL_CONFIG[model_key] | |
if model is None: | |
raise ValueError(f"Model is None for {model_key}") | |
# For GGUF models from llama-cpp-python | |
if is_gguf: | |
# Create adapter to use GGUF model like HF pipeline | |
from langchain.llms import LlamaCpp | |
llm = LlamaCpp( | |
model_path=model.model_path, | |
temperature=0.3, | |
max_tokens=256, # Increased for more comprehensive answers | |
top_p=0.9, | |
n_ctx=2048, | |
streaming=False | |
) | |
return llm | |
# Create appropriate pipeline for HF models | |
elif model_info.get("is_t5", False): | |
print("Creating T5 pipeline") | |
pipe = pipeline( | |
"text2text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=256, # Increased for more comprehensive answers | |
temperature=0.3, | |
top_p=0.9, | |
return_full_text=False, | |
) | |
else: | |
print("Creating causal LM pipeline") | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=256, # Increased for more comprehensive answers | |
temperature=0.3, | |
top_p=0.9, | |
top_k=30, | |
repetition_penalty=1.2, | |
return_full_text=False, | |
) | |
print("Pipeline created successfully") | |
return HuggingFacePipeline(pipeline=pipe) | |
except Exception as e: | |
import traceback | |
print(f"Error creating pipeline: {str(e)}") | |
print(traceback.format_exc()) | |
raise RuntimeError(f"Failed to create pipeline: {str(e)}") | |
def handle_model_loading_error(model_key, session_id): | |
"""Handle model loading errors by providing alternative model suggestions""" | |
suggested_models = [ | |
"DeepSeek Coder Instruct", # 1.3B model | |
"Phi-4 Mini Instruct", # Light model | |
"TinyLlama Chat", # 1.1B model | |
"Flan T5 Small" # Lightweight T5 | |
] | |
# Remove the current model from suggestions if it's in the list | |
if model_key in suggested_models: | |
suggested_models.remove(model_key) | |
suggestions = ", ".join(suggested_models[:3]) # Only show top 3 suggestions | |
return None, f"Unable to load model {model_key}. Please try another model such as: {suggestions}" | |
def create_conversational_chain(db, file_path, model_key): | |
llm = create_llm_pipeline(model_key) | |
# Load the file into pandas to get metadata about the CSV | |
df = pd.read_csv(file_path) | |
# Create improved prompt template that focuses on pure LLM analysis | |
template = """ | |
You are an expert data analyst tasked with answering questions about a CSV file. The file has been analyzed, and its structure is provided below. | |
CSV File Structure: | |
- Total rows: {row_count} | |
- Total columns: {column_count} | |
- Columns: {columns_list} | |
Sample data (first few rows): | |
{sample_data} | |
Additional context from the document: | |
{context} | |
User Question: {question} | |
IMPORTANT INSTRUCTIONS: | |
1. Answer the question directly about the CSV data with accurate information. | |
2. If asked for basic statistics (mean, sum, max, min, count, etc.), perform the calculation mentally and provide the result. Include up to 2 decimal places for non-integer values. | |
3. If asked about patterns or trends, analyze the data thoughtfully. | |
4. Keep answers concise but informative. Respond in the same language as the question. | |
5. If you are not certain of a precise answer, explain what you can determine from the available data. | |
6. You can perform simple calculations including: counts, sums, averages, minimums, maximums, and basic filtering. | |
7. For questions about specific values in the data, reference the sample data and available context. | |
8. Do not mention any programming language or how you would code the solution. | |
Your analysis: | |
""" | |
PROMPT = PromptTemplate( | |
template=template, | |
input_variables=["row_count", "column_count", "columns_list", "sample_data", "context", "question"] | |
) | |
# Create retriever | |
retriever = db.as_retriever(search_kwargs={"k": 5}) # Increase k for better context | |
# Process query with better error handling | |
def process_query(query, chat_history): | |
try: | |
start_time = time.time() | |
# Get information from dataframe for context | |
columns_list = ", ".join(df.columns.tolist()) | |
sample_data = df.head(5).to_string() # Show 5 rows for better context | |
row_count = len(df) | |
column_count = len(df.columns) | |
# Get context from vector database | |
docs = retriever.get_relevant_documents(query) | |
context = "\n\n".join([doc.page_content for doc in docs]) | |
# Run the chain | |
chain = LLMChain(llm=llm, prompt=PROMPT) | |
raw_result = chain.run( | |
row_count=row_count, | |
column_count=column_count, | |
columns_list=columns_list, | |
sample_data=sample_data, | |
context=context, | |
question=query | |
) | |
# Clean the result | |
cleaned_result = raw_result.strip() | |
# If result is empty after cleaning, use a fallback | |
if not cleaned_result: | |
cleaned_result = "I couldn't process a complete answer to your question. Please try asking in a different way or provide more specific details about what you'd like to know about the data." | |
processing_time = time.time() - start_time | |
# Log performance metrics | |
performance_tracker.log_performance( | |
model_key, | |
query, | |
processing_time, | |
cleaned_result | |
) | |
# Add processing time to the response for comparison purposes | |
result_with_metrics = f"{cleaned_result}\n\n[Processing time: {processing_time:.2f} seconds]" | |
return {"answer": result_with_metrics} | |
except Exception as e: | |
import traceback | |
print(f"Error in process_query: {str(e)}") | |
print(traceback.format_exc()) | |
return {"answer": f"An error occurred while processing your question: {str(e)}"} | |
return process_query | |
class ChatBot: | |
def __init__(self, session_id, model_key="DeepSeek Coder Instruct"): | |
self.session_id = session_id | |
self.chat_history = [] | |
self.chain = None | |
self.user_dir = f"user_data/{session_id}" | |
self.csv_file_path = None | |
self.model_key = model_key | |
os.makedirs(self.user_dir, exist_ok=True) | |
def process_file(self, file, model_key=None): | |
if model_key: | |
self.model_key = model_key | |
if file is None: | |
return "Please upload a CSV file first." | |
try: | |
print(f"Processing file using model: {self.model_key}") | |
# Handle file from Gradio | |
file_path = file.name if hasattr(file, 'name') else str(file) | |
self.csv_file_path = file_path | |
print(f"CSV file path: {file_path}") | |
# Copy to user directory | |
user_file_path = f"{self.user_dir}/uploaded.csv" | |
# Verify the CSV can be loaded | |
try: | |
df = pd.read_csv(file_path) | |
print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns") | |
# Save a copy in user directory | |
df.to_csv(user_file_path, index=False) | |
self.csv_file_path = user_file_path | |
print(f"CSV saved to {user_file_path}") | |
except Exception as e: | |
print(f"Error reading CSV: {str(e)}") | |
return f"Error reading CSV: {str(e)}" | |
# Load document with reduced chunk size for better memory usage | |
try: | |
loader = CSVLoader(file_path=user_file_path, encoding="utf-8", csv_args={ | |
'delimiter': ','}) | |
data = loader.load() | |
print(f"Documents loaded: {len(data)}") | |
except Exception as e: | |
print(f"Error loading documents: {str(e)}") | |
return f"Error loading documents: {str(e)}" | |
# Create vector database with optimized settings | |
try: | |
db_path = f"{self.user_dir}/db_faiss" | |
# Use CPU-friendly embeddings with smaller dimensions | |
embeddings = HuggingFaceEmbeddings( | |
model_name='sentence-transformers/all-MiniLM-L6-v2', | |
model_kwargs={'device': 'cpu'} | |
) | |
db = FAISS.from_documents(data, embeddings) | |
db.save_local(db_path) | |
print(f"Vector database created at {db_path}") | |
except Exception as e: | |
print(f"Error creating vector database: {str(e)}") | |
return f"Error creating vector database: {str(e)}" | |
# Create custom chain | |
try: | |
print(f"Creating conversation chain with model: {self.model_key}") | |
self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key) | |
print("Chain created successfully") | |
except Exception as e: | |
import traceback | |
print(f"Error creating chain: {str(e)}") | |
print(traceback.format_exc()) | |
return f"Error creating chain: {str(e)}" | |
# Add basic file info to chat history for context | |
file_info = f"CSV successfully loaded with {df.shape[0]} rows and {len(df.columns)} columns using model {self.model_key}. Columns: {', '.join(df.columns.tolist())}" | |
self.chat_history.append(("System", file_info)) | |
return f"CSV file successfully processed with model {self.model_key}! You can now chat with the model to analyze the data." | |
except Exception as e: | |
import traceback | |
print(traceback.format_exc()) | |
return f"File processing error: {str(e)}" | |
def change_model(self, model_key): | |
"""Change the model being used and recreate the chain if necessary""" | |
try: | |
if model_key == self.model_key: | |
return f"Model {model_key} is already in use." | |
print(f"Changing model from {self.model_key} to {model_key}") | |
self.model_key = model_key | |
# If we have an active session with a file already loaded, recreate the chain | |
if self.csv_file_path and os.path.exists(self.csv_file_path): | |
try: | |
# Load existing database | |
db_path = f"{self.user_dir}/db_faiss" | |
if not os.path.exists(db_path): | |
return f"Error: Database not found. Please upload the CSV file again." | |
print(f"Loading embeddings from {db_path}") | |
embeddings = HuggingFaceEmbeddings( | |
model_name='sentence-transformers/all-MiniLM-L6-v2', | |
model_kwargs={'device': 'cpu'} | |
) | |
# Add allow_dangerous_deserialization=True flag | |
db = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True) | |
print(f"FAISS database loaded successfully") | |
# Create new chain with the selected model | |
print(f"Creating new conversation chain with {model_key}") | |
self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key) | |
print(f"Chain created successfully") | |
# Add notification to chat history | |
self.chat_history.append(("System", f"Model successfully changed to {model_key}.")) | |
return f"Model successfully changed to {model_key}." | |
except Exception as e: | |
import traceback | |
error_trace = traceback.format_exc() | |
print(f"Detailed error in change_model: {error_trace}") | |
return f"Error changing model: {str(e)}" | |
else: | |
# Just update the model key if no file is loaded yet | |
print(f"No CSV file loaded yet, just updating model preference to {model_key}") | |
return f"Model changed to {model_key}. Please upload a CSV file to begin." | |
except Exception as e: | |
import traceback | |
error_trace = traceback.format_exc() | |
print(f"Unexpected error in change_model: {error_trace}") | |
return f"Unexpected error while changing model: {str(e)}" | |
def chat(self, message, history): | |
if self.chain is None: | |
return "Please upload a CSV file first." | |
try: | |
# Process the question with the chain | |
result = self.chain(message, self.chat_history) | |
# Get the answer with fallback | |
answer = result.get("answer", "Sorry, I couldn't generate an answer. Please try asking a different question.") | |
# Ensure we never return empty | |
if not answer or answer.strip() == "": | |
answer = "Sorry, I couldn't generate an appropriate answer. Please try asking the question differently." | |
# Update internal chat history | |
self.chat_history.append((message, answer)) | |
# Return just the answer for Gradio | |
return answer | |
except Exception as e: | |
import traceback | |
print(traceback.format_exc()) | |
return f"Error: {str(e)}" | |
# UI Code | |
def create_gradio_interface(): | |
with gr.Blocks(title="Chat with CSV using AI Models") as interface: | |
session_id = gr.State(lambda: str(uuid.uuid4())) | |
chatbot_state = gr.State(lambda: None) | |
model_selected = gr.State(lambda: False) # Track if model is already in use | |
# Get model choices | |
model_choices = list(MODEL_CONFIG.keys()) | |
default_model = "DeepSeek Coder Instruct" # Default model | |
gr.HTML("<h1 style='text-align: center;'>Chat with CSV using AI Models</h1>") | |
gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV untuk berbagai kebutuhan</h3>") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(): | |
gr.Markdown("### Step 1: Choose AI Model") | |
model_dropdown = gr.Dropdown( | |
label="Model", | |
choices=model_choices, | |
value=default_model, | |
interactive=True | |
) | |
model_info = gr.Markdown( | |
value=f"**{default_model}**: {MODEL_CONFIG[default_model]['description']}" | |
) | |
with gr.Group(): | |
gr.Markdown("### Step 2: Upload and Process CSV") | |
file_input = gr.File( | |
label="Upload CSV Anda", | |
file_types=[".csv"] | |
) | |
process_button = gr.Button("Process CSV") | |
reset_button = gr.Button("Reset Session (To Change Model)") | |
with gr.Column(scale=2): | |
chatbot_interface = gr.Chatbot( | |
label="Chat History", | |
# type="messages", | |
height=400 | |
) | |
message_input = gr.Textbox( | |
label="Type your message", | |
placeholder="Ask questions about your CSV data...", | |
lines=2 | |
) | |
submit_button = gr.Button("Send") | |
clear_button = gr.Button("Clear Chat") | |
# Update model info when selection changes | |
def update_model_info(model_key): | |
return f"**{model_key}**: {MODEL_CONFIG[model_key]['description']}" | |
model_dropdown.change( | |
fn=update_model_info, | |
inputs=[model_dropdown], | |
outputs=[model_info] | |
) | |
# Process file handler - disables model selection after file is processed | |
def handle_process_file(file, model_key, sess_id): | |
if file is None: | |
return None, None, False, "Please upload a CSV file first." | |
try: | |
chatbot = ChatBot(sess_id, model_key) | |
result = chatbot.process_file(file) | |
return chatbot, True, [(None, result)] | |
except Exception as e: | |
import traceback | |
print(f"Error processing file with {model_key}: {str(e)}") | |
print(traceback.format_exc()) | |
error_msg = f"Error with model {model_key}: {str(e)}\n\nPlease try another model." | |
return None, False, [(None, error_msg)] | |
process_button.click( | |
fn=handle_process_file, | |
inputs=[file_input, model_dropdown, session_id], | |
outputs=[chatbot_state, model_selected, chatbot_interface] | |
).then( | |
# Disable model dropdown after processing file | |
fn=lambda selected: gr.update(interactive=not selected), | |
inputs=[model_selected], | |
outputs=[model_dropdown] | |
) | |
# Reset handler - enables model selection again | |
def reset_session(): | |
return None, False, [], gr.update(interactive=True) | |
reset_button.click( | |
fn=reset_session, | |
inputs=[], | |
outputs=[chatbot_state, model_selected, chatbot_interface, model_dropdown] | |
) | |
# Chat handlers | |
def user_message_submitted(message, history, chatbot, sess_id): | |
history = history + [(message, None)] | |
return history, "", chatbot, sess_id | |
def bot_response(history, chatbot, sess_id): | |
if chatbot is None: | |
chatbot = ChatBot(sess_id) | |
history[-1] = (history[-1][0], "Please upload a CSV file first.") | |
return chatbot, history | |
user_message = history[-1][0] | |
response = chatbot.chat(user_message, history[:-1]) | |
history[-1] = (user_message, response) | |
return chatbot, history | |
submit_button.click( | |
fn=user_message_submitted, | |
inputs=[message_input, chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_interface, message_input, chatbot_state, session_id] | |
).then( | |
fn=bot_response, | |
inputs=[chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
message_input.submit( | |
fn=user_message_submitted, | |
inputs=[message_input, chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_interface, message_input, chatbot_state, session_id] | |
).then( | |
fn=bot_response, | |
inputs=[chatbot_interface, chatbot_state, session_id], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
# Clear chat handler | |
def handle_clear_chat(chatbot): | |
if chatbot is not None: | |
chatbot.chat_history = [] | |
return chatbot, [] | |
clear_button.click( | |
fn=handle_clear_chat, | |
inputs=[chatbot_state], | |
outputs=[chatbot_state, chatbot_interface] | |
) | |
return interface | |
# Launch the interface | |
demo = create_gradio_interface() | |
demo.launch(share=True) |