Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import gc | |
| import os | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" | |
| os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU only | |
| import uuid | |
| import threading | |
| import pandas as pd | |
| import torch | |
| from langchain.document_loaders import CSVLoader | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.llms import HuggingFacePipeline | |
| from langchain.chains import LLMChain | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, T5Tokenizer, T5ForConditionalGeneration, BitsAndBytesConfig, pipeline | |
| from langchain.prompts import PromptTemplate | |
| from llama_cpp import Llama | |
| import re | |
| import datetime | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| # Global model cache | |
| MODEL_CACHE = { | |
| "model": None, | |
| "tokenizer": None, | |
| "init_lock": threading.Lock(), | |
| "model_name": None | |
| } | |
| # Create directories for user data | |
| os.makedirs("user_data", exist_ok=True) | |
| os.makedirs("performance_metrics", exist_ok=True) | |
| # Model configuration dictionary | |
| MODEL_CONFIG = { | |
| "Llama 2 Chat": { | |
| "name": "TheBloke/Llama-2-7B-Chat-GGUF", | |
| "description": "Llama 2 7B Chat model with good general performance", | |
| "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
| }, | |
| "TinyLlama Chat": { | |
| "name": "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF", | |
| "description": "Lightweight model with 1.1B parameters, fast and efficient", | |
| "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
| }, | |
| "Mistral Instruct": { | |
| "name": "TheBloke/Mistral-7B-Instruct-v0.2-GGUF", | |
| "description": "7B instruction-tuned model with excellent reasoning", | |
| "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
| }, | |
| "Phi-4 Mini Instruct": { | |
| "name": "microsoft/Phi-4-mini-instruct", | |
| "description": "Lightweight model from Microsoft suitable for instructional tasks", | |
| "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
| }, | |
| "DeepSeek Coder Instruct": { | |
| "name": "deepseek-ai/deepseek-coder-1.3b-instruct", | |
| "description": "1.3B model for code and data analysis", | |
| "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
| }, | |
| "DeepSeek Lite Chat": { | |
| "name": "deepseek-ai/DeepSeek-V2-Lite-Chat", | |
| "description": "Light but powerful chat model from DeepSeek", | |
| "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
| }, | |
| "Qwen2.5 Coder Instruct": { | |
| "name": "Qwen/Qwen2.5-Coder-3B-Instruct-GGUF", | |
| "description": "3B model specialized for code and technical applications", | |
| "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
| }, | |
| "DeepSeek Distill Qwen": { | |
| "name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", | |
| "description": "1.5B distilled model with good balance of speed and quality", | |
| "dtype": torch.float16 if torch.cuda.is_available() else torch.float32 | |
| }, | |
| "Flan T5 Small": { | |
| "name": "google/flan-t5-small", | |
| "description": "Lightweight T5 model optimized for instruction following", | |
| "dtype": torch.float16 if torch.cuda.is_available() else torch.float32, | |
| "is_t5": True | |
| } | |
| } | |
| # Performance metrics tracking | |
| class PerformanceTracker: | |
| def __init__(self): | |
| self.metrics_file = "performance_metrics/model_performance.csv" | |
| # Create metrics file if it doesn't exist | |
| if not os.path.exists(self.metrics_file): | |
| with open(self.metrics_file, "w") as f: | |
| f.write("timestamp,model,question,processing_time,response_length\n") | |
| def log_performance(self, model_name, question, processing_time, response): | |
| timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| response_length = len(response) | |
| with open(self.metrics_file, "a") as f: | |
| f.write(f'"{timestamp}","{model_name}","{question}",{processing_time},{response_length}\n') | |
| print(f"Logged performance for {model_name}: {processing_time:.2f}s") | |
| # Initialize performance tracker | |
| performance_tracker = PerformanceTracker() | |
| def initialize_model_once(model_key): | |
| with MODEL_CACHE["init_lock"]: | |
| current_model = MODEL_CACHE["model_name"] | |
| if MODEL_CACHE["model"] is None or current_model != model_key: | |
| # Clear previous model | |
| if MODEL_CACHE["model"] is not None: | |
| del MODEL_CACHE["model"] | |
| if MODEL_CACHE["tokenizer"] is not None: | |
| del MODEL_CACHE["tokenizer"] | |
| torch.cuda.empty_cache() if torch.cuda.is_available() else None | |
| model_info = MODEL_CONFIG[model_key] | |
| model_name = model_info["name"] | |
| MODEL_CACHE["model_name"] = model_key | |
| try: | |
| print(f"Loading model: {model_name}") | |
| # Check if this is a GGUF model | |
| if "GGUF" in model_name: | |
| # Download the model file first if it doesn't exist | |
| from huggingface_hub import hf_hub_download | |
| try: | |
| # Try to find the GGUF file in the repo | |
| repo_id = model_name | |
| model_path = hf_hub_download( | |
| repo_id=repo_id, | |
| filename="model.gguf" # File name may differ | |
| ) | |
| except Exception as e: | |
| print(f"Couldn't find model.gguf, trying other filenames: {str(e)}") | |
| # Try to find GGUF file with other names | |
| import requests | |
| from huggingface_hub import list_repo_files | |
| files = list_repo_files(repo_id) | |
| gguf_files = [f for f in files if f.endswith('.gguf')] | |
| if not gguf_files: | |
| raise ValueError(f"No GGUF files found in {repo_id}") | |
| # Use first GGUF file found | |
| model_path = hf_hub_download(repo_id=repo_id, filename=gguf_files[0]) | |
| # Load GGUF model with llama-cpp-python | |
| MODEL_CACHE["model"] = Llama( | |
| model_path=model_path, | |
| n_ctx=2048, # Smaller context for memory savings | |
| n_batch=512, | |
| n_threads=2 # Adjust for 2 vCPU | |
| ) | |
| MODEL_CACHE["tokenizer"] = None # GGUF doesn't need separate tokenizer | |
| MODEL_CACHE["is_gguf"] = True | |
| # Handle T5 models | |
| elif model_info.get("is_t5", False): | |
| MODEL_CACHE["tokenizer"] = T5Tokenizer.from_pretrained(model_name) | |
| MODEL_CACHE["model"] = T5ForConditionalGeneration.from_pretrained( | |
| model_name, | |
| torch_dtype=model_info["dtype"], | |
| device_map="auto" if torch.cuda.is_available() else None, | |
| low_cpu_mem_usage=True | |
| ) | |
| MODEL_CACHE["is_gguf"] = False | |
| # Handle standard HF models | |
| else: | |
| # Only use quantization if CUDA is available | |
| if torch.cuda.is_available(): | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.float16, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_use_double_quant=True | |
| ) | |
| MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| quantization_config=quantization_config, | |
| torch_dtype=model_info["dtype"], | |
| device_map="auto", | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=True | |
| ) | |
| else: | |
| # For CPU-only environments, load without quantization | |
| MODEL_CACHE["tokenizer"] = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| MODEL_CACHE["model"] = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float32, # Use float32 for CPU | |
| device_map=None, | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=True | |
| ) | |
| MODEL_CACHE["is_gguf"] = False | |
| print(f"Model {model_name} loaded successfully") | |
| except Exception as e: | |
| import traceback | |
| print(f"Error loading model {model_name}: {str(e)}") | |
| print(traceback.format_exc()) | |
| raise RuntimeError(f"Failed to load model {model_name}: {str(e)}") | |
| return MODEL_CACHE["tokenizer"], MODEL_CACHE["model"], MODEL_CACHE.get("is_gguf", False) | |
| def create_llm_pipeline(model_key): | |
| """Create a new pipeline using the specified model""" | |
| try: | |
| print(f"Creating pipeline for model: {model_key}") | |
| tokenizer, model, is_gguf = initialize_model_once(model_key) | |
| # Get the model info for reference | |
| model_info = MODEL_CONFIG[model_key] | |
| if model is None: | |
| raise ValueError(f"Model is None for {model_key}") | |
| # For GGUF models from llama-cpp-python | |
| if is_gguf: | |
| # Create adapter to use GGUF model like HF pipeline | |
| from langchain.llms import LlamaCpp | |
| llm = LlamaCpp( | |
| model_path=model.model_path, | |
| temperature=0.3, | |
| max_tokens=256, # Increased for more comprehensive answers | |
| top_p=0.9, | |
| n_ctx=2048, | |
| streaming=False | |
| ) | |
| return llm | |
| # Create appropriate pipeline for HF models | |
| elif model_info.get("is_t5", False): | |
| print("Creating T5 pipeline") | |
| pipe = pipeline( | |
| "text2text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_new_tokens=256, # Increased for more comprehensive answers | |
| temperature=0.3, | |
| top_p=0.9, | |
| return_full_text=False, | |
| ) | |
| else: | |
| print("Creating causal LM pipeline") | |
| pipe = pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_new_tokens=256, # Increased for more comprehensive answers | |
| temperature=0.3, | |
| top_p=0.9, | |
| top_k=30, | |
| repetition_penalty=1.2, | |
| return_full_text=False, | |
| ) | |
| print("Pipeline created successfully") | |
| return HuggingFacePipeline(pipeline=pipe) | |
| except Exception as e: | |
| import traceback | |
| print(f"Error creating pipeline: {str(e)}") | |
| print(traceback.format_exc()) | |
| raise RuntimeError(f"Failed to create pipeline: {str(e)}") | |
| def handle_model_loading_error(model_key, session_id): | |
| """Handle model loading errors by providing alternative model suggestions""" | |
| suggested_models = [ | |
| "DeepSeek Coder Instruct", # 1.3B model | |
| "Phi-4 Mini Instruct", # Light model | |
| "TinyLlama Chat", # 1.1B model | |
| "Flan T5 Small" # Lightweight T5 | |
| ] | |
| # Remove the current model from suggestions if it's in the list | |
| if model_key in suggested_models: | |
| suggested_models.remove(model_key) | |
| suggestions = ", ".join(suggested_models[:3]) # Only show top 3 suggestions | |
| return None, f"Unable to load model {model_key}. Please try another model such as: {suggestions}" | |
| def create_conversational_chain(db, file_path, model_key): | |
| llm = create_llm_pipeline(model_key) | |
| # Load the file into pandas to get metadata about the CSV | |
| df = pd.read_csv(file_path) | |
| # Create improved prompt template that focuses on pure LLM analysis | |
| template = """ | |
| You are an expert data analyst tasked with answering questions about a CSV file. The file has been analyzed, and its structure is provided below. | |
| CSV File Structure: | |
| - Total rows: {row_count} | |
| - Total columns: {column_count} | |
| - Columns: {columns_list} | |
| Sample data (first few rows): | |
| {sample_data} | |
| Additional context from the document: | |
| {context} | |
| User Question: {question} | |
| IMPORTANT INSTRUCTIONS: | |
| 1. Answer the question directly about the CSV data with accurate information. | |
| 2. If asked for basic statistics (mean, sum, max, min, count, etc.), perform the calculation mentally and provide the result. Include up to 2 decimal places for non-integer values. | |
| 3. If asked about patterns or trends, analyze the data thoughtfully. | |
| 4. Keep answers concise but informative. Respond in the same language as the question. | |
| 5. If you are not certain of a precise answer, explain what you can determine from the available data. | |
| 6. You can perform simple calculations including: counts, sums, averages, minimums, maximums, and basic filtering. | |
| 7. For questions about specific values in the data, reference the sample data and available context. | |
| 8. Do not mention any programming language or how you would code the solution. | |
| Your analysis: | |
| """ | |
| PROMPT = PromptTemplate( | |
| template=template, | |
| input_variables=["row_count", "column_count", "columns_list", "sample_data", "context", "question"] | |
| ) | |
| # Create retriever | |
| retriever = db.as_retriever(search_kwargs={"k": 5}) # Increase k for better context | |
| # Process query with better error handling | |
| def process_query(query, chat_history): | |
| try: | |
| start_time = time.time() | |
| # Get information from dataframe for context | |
| columns_list = ", ".join(df.columns.tolist()) | |
| sample_data = df.head(5).to_string() # Show 5 rows for better context | |
| row_count = len(df) | |
| column_count = len(df.columns) | |
| # Get context from vector database | |
| docs = retriever.get_relevant_documents(query) | |
| context = "\n\n".join([doc.page_content for doc in docs]) | |
| # Run the chain | |
| chain = LLMChain(llm=llm, prompt=PROMPT) | |
| raw_result = chain.run( | |
| row_count=row_count, | |
| column_count=column_count, | |
| columns_list=columns_list, | |
| sample_data=sample_data, | |
| context=context, | |
| question=query | |
| ) | |
| # Clean the result | |
| cleaned_result = raw_result.strip() | |
| # If result is empty after cleaning, use a fallback | |
| if not cleaned_result: | |
| cleaned_result = "I couldn't process a complete answer to your question. Please try asking in a different way or provide more specific details about what you'd like to know about the data." | |
| processing_time = time.time() - start_time | |
| # Log performance metrics | |
| performance_tracker.log_performance( | |
| model_key, | |
| query, | |
| processing_time, | |
| cleaned_result | |
| ) | |
| # Add processing time to the response for comparison purposes | |
| result_with_metrics = f"{cleaned_result}\n\n[Processing time: {processing_time:.2f} seconds]" | |
| return {"answer": result_with_metrics} | |
| except Exception as e: | |
| import traceback | |
| print(f"Error in process_query: {str(e)}") | |
| print(traceback.format_exc()) | |
| return {"answer": f"An error occurred while processing your question: {str(e)}"} | |
| return process_query | |
| class ChatBot: | |
| def __init__(self, session_id, model_key="DeepSeek Coder Instruct"): | |
| self.session_id = session_id | |
| self.chat_history = [] | |
| self.chain = None | |
| self.user_dir = f"user_data/{session_id}" | |
| self.csv_file_path = None | |
| self.model_key = model_key | |
| os.makedirs(self.user_dir, exist_ok=True) | |
| def process_file(self, file, model_key=None): | |
| if model_key: | |
| self.model_key = model_key | |
| if file is None: | |
| return "Please upload a CSV file first." | |
| try: | |
| print(f"Processing file using model: {self.model_key}") | |
| # Handle file from Gradio | |
| file_path = file.name if hasattr(file, 'name') else str(file) | |
| self.csv_file_path = file_path | |
| print(f"CSV file path: {file_path}") | |
| # Copy to user directory | |
| user_file_path = f"{self.user_dir}/uploaded.csv" | |
| # Verify the CSV can be loaded | |
| try: | |
| df = pd.read_csv(file_path) | |
| print(f"CSV verified: {df.shape[0]} rows, {len(df.columns)} columns") | |
| # Save a copy in user directory | |
| df.to_csv(user_file_path, index=False) | |
| self.csv_file_path = user_file_path | |
| print(f"CSV saved to {user_file_path}") | |
| except Exception as e: | |
| print(f"Error reading CSV: {str(e)}") | |
| return f"Error reading CSV: {str(e)}" | |
| # Load document with reduced chunk size for better memory usage | |
| try: | |
| loader = CSVLoader(file_path=user_file_path, encoding="utf-8", csv_args={ | |
| 'delimiter': ','}) | |
| data = loader.load() | |
| print(f"Documents loaded: {len(data)}") | |
| except Exception as e: | |
| print(f"Error loading documents: {str(e)}") | |
| return f"Error loading documents: {str(e)}" | |
| # Create vector database with optimized settings | |
| try: | |
| db_path = f"{self.user_dir}/db_faiss" | |
| # Use CPU-friendly embeddings with smaller dimensions | |
| embeddings = HuggingFaceEmbeddings( | |
| model_name='sentence-transformers/all-MiniLM-L6-v2', | |
| model_kwargs={'device': 'cpu'} | |
| ) | |
| db = FAISS.from_documents(data, embeddings) | |
| db.save_local(db_path) | |
| print(f"Vector database created at {db_path}") | |
| except Exception as e: | |
| print(f"Error creating vector database: {str(e)}") | |
| return f"Error creating vector database: {str(e)}" | |
| # Create custom chain | |
| try: | |
| print(f"Creating conversation chain with model: {self.model_key}") | |
| self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key) | |
| print("Chain created successfully") | |
| except Exception as e: | |
| import traceback | |
| print(f"Error creating chain: {str(e)}") | |
| print(traceback.format_exc()) | |
| return f"Error creating chain: {str(e)}" | |
| # Add basic file info to chat history for context | |
| file_info = f"CSV successfully loaded with {df.shape[0]} rows and {len(df.columns)} columns using model {self.model_key}. Columns: {', '.join(df.columns.tolist())}" | |
| self.chat_history.append(("System", file_info)) | |
| return f"CSV file successfully processed with model {self.model_key}! You can now chat with the model to analyze the data." | |
| except Exception as e: | |
| import traceback | |
| print(traceback.format_exc()) | |
| return f"File processing error: {str(e)}" | |
| def change_model(self, model_key): | |
| """Change the model being used and recreate the chain if necessary""" | |
| try: | |
| if model_key == self.model_key: | |
| return f"Model {model_key} is already in use." | |
| print(f"Changing model from {self.model_key} to {model_key}") | |
| self.model_key = model_key | |
| # If we have an active session with a file already loaded, recreate the chain | |
| if self.csv_file_path and os.path.exists(self.csv_file_path): | |
| try: | |
| # Load existing database | |
| db_path = f"{self.user_dir}/db_faiss" | |
| if not os.path.exists(db_path): | |
| return f"Error: Database not found. Please upload the CSV file again." | |
| print(f"Loading embeddings from {db_path}") | |
| embeddings = HuggingFaceEmbeddings( | |
| model_name='sentence-transformers/all-MiniLM-L6-v2', | |
| model_kwargs={'device': 'cpu'} | |
| ) | |
| # Add allow_dangerous_deserialization=True flag | |
| db = FAISS.load_local(db_path, embeddings, allow_dangerous_deserialization=True) | |
| print(f"FAISS database loaded successfully") | |
| # Create new chain with the selected model | |
| print(f"Creating new conversation chain with {model_key}") | |
| self.chain = create_conversational_chain(db, self.csv_file_path, self.model_key) | |
| print(f"Chain created successfully") | |
| # Add notification to chat history | |
| self.chat_history.append(("System", f"Model successfully changed to {model_key}.")) | |
| return f"Model successfully changed to {model_key}." | |
| except Exception as e: | |
| import traceback | |
| error_trace = traceback.format_exc() | |
| print(f"Detailed error in change_model: {error_trace}") | |
| return f"Error changing model: {str(e)}" | |
| else: | |
| # Just update the model key if no file is loaded yet | |
| print(f"No CSV file loaded yet, just updating model preference to {model_key}") | |
| return f"Model changed to {model_key}. Please upload a CSV file to begin." | |
| except Exception as e: | |
| import traceback | |
| error_trace = traceback.format_exc() | |
| print(f"Unexpected error in change_model: {error_trace}") | |
| return f"Unexpected error while changing model: {str(e)}" | |
| def chat(self, message, history): | |
| if self.chain is None: | |
| return "Please upload a CSV file first." | |
| try: | |
| # Process the question with the chain | |
| result = self.chain(message, self.chat_history) | |
| # Get the answer with fallback | |
| answer = result.get("answer", "Sorry, I couldn't generate an answer. Please try asking a different question.") | |
| # Ensure we never return empty | |
| if not answer or answer.strip() == "": | |
| answer = "Sorry, I couldn't generate an appropriate answer. Please try asking the question differently." | |
| # Update internal chat history | |
| self.chat_history.append((message, answer)) | |
| # Return just the answer for Gradio | |
| return answer | |
| except Exception as e: | |
| import traceback | |
| print(traceback.format_exc()) | |
| return f"Error: {str(e)}" | |
| # UI Code | |
| def create_gradio_interface(): | |
| with gr.Blocks(title="Chat with CSV using AI Models") as interface: | |
| session_id = gr.State(lambda: str(uuid.uuid4())) | |
| chatbot_state = gr.State(lambda: None) | |
| model_selected = gr.State(lambda: False) # Track if model is already in use | |
| # Get model choices | |
| model_choices = list(MODEL_CONFIG.keys()) | |
| default_model = "DeepSeek Coder Instruct" # Default model | |
| gr.HTML("<h1 style='text-align: center;'>Chat with CSV using AI Models</h1>") | |
| gr.HTML("<h3 style='text-align: center;'>Asisten analisis CSV untuk berbagai kebutuhan</h3>") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| with gr.Group(): | |
| gr.Markdown("### Step 1: Choose AI Model") | |
| model_dropdown = gr.Dropdown( | |
| label="Model", | |
| choices=model_choices, | |
| value=default_model, | |
| interactive=True | |
| ) | |
| model_info = gr.Markdown( | |
| value=f"**{default_model}**: {MODEL_CONFIG[default_model]['description']}" | |
| ) | |
| with gr.Group(): | |
| gr.Markdown("### Step 2: Upload and Process CSV") | |
| file_input = gr.File( | |
| label="Upload CSV Anda", | |
| file_types=[".csv"] | |
| ) | |
| process_button = gr.Button("Process CSV") | |
| reset_button = gr.Button("Reset Session (To Change Model)") | |
| with gr.Column(scale=2): | |
| chatbot_interface = gr.Chatbot( | |
| label="Chat History", | |
| # type="messages", | |
| height=400 | |
| ) | |
| message_input = gr.Textbox( | |
| label="Type your message", | |
| placeholder="Ask questions about your CSV data...", | |
| lines=2 | |
| ) | |
| submit_button = gr.Button("Send") | |
| clear_button = gr.Button("Clear Chat") | |
| # Update model info when selection changes | |
| def update_model_info(model_key): | |
| return f"**{model_key}**: {MODEL_CONFIG[model_key]['description']}" | |
| model_dropdown.change( | |
| fn=update_model_info, | |
| inputs=[model_dropdown], | |
| outputs=[model_info] | |
| ) | |
| # Process file handler - disables model selection after file is processed | |
| def handle_process_file(file, model_key, sess_id): | |
| if file is None: | |
| return None, None, False, "Please upload a CSV file first." | |
| try: | |
| chatbot = ChatBot(sess_id, model_key) | |
| result = chatbot.process_file(file) | |
| return chatbot, True, [(None, result)] | |
| except Exception as e: | |
| import traceback | |
| print(f"Error processing file with {model_key}: {str(e)}") | |
| print(traceback.format_exc()) | |
| error_msg = f"Error with model {model_key}: {str(e)}\n\nPlease try another model." | |
| return None, False, [(None, error_msg)] | |
| process_button.click( | |
| fn=handle_process_file, | |
| inputs=[file_input, model_dropdown, session_id], | |
| outputs=[chatbot_state, model_selected, chatbot_interface] | |
| ).then( | |
| # Disable model dropdown after processing file | |
| fn=lambda selected: gr.update(interactive=not selected), | |
| inputs=[model_selected], | |
| outputs=[model_dropdown] | |
| ) | |
| # Reset handler - enables model selection again | |
| def reset_session(): | |
| return None, False, [], gr.update(interactive=True) | |
| reset_button.click( | |
| fn=reset_session, | |
| inputs=[], | |
| outputs=[chatbot_state, model_selected, chatbot_interface, model_dropdown] | |
| ) | |
| # Chat handlers | |
| def user_message_submitted(message, history, chatbot, sess_id): | |
| history = history + [(message, None)] | |
| return history, "", chatbot, sess_id | |
| def bot_response(history, chatbot, sess_id): | |
| if chatbot is None: | |
| chatbot = ChatBot(sess_id) | |
| history[-1] = (history[-1][0], "Please upload a CSV file first.") | |
| return chatbot, history | |
| user_message = history[-1][0] | |
| response = chatbot.chat(user_message, history[:-1]) | |
| history[-1] = (user_message, response) | |
| return chatbot, history | |
| submit_button.click( | |
| fn=user_message_submitted, | |
| inputs=[message_input, chatbot_interface, chatbot_state, session_id], | |
| outputs=[chatbot_interface, message_input, chatbot_state, session_id] | |
| ).then( | |
| fn=bot_response, | |
| inputs=[chatbot_interface, chatbot_state, session_id], | |
| outputs=[chatbot_state, chatbot_interface] | |
| ) | |
| message_input.submit( | |
| fn=user_message_submitted, | |
| inputs=[message_input, chatbot_interface, chatbot_state, session_id], | |
| outputs=[chatbot_interface, message_input, chatbot_state, session_id] | |
| ).then( | |
| fn=bot_response, | |
| inputs=[chatbot_interface, chatbot_state, session_id], | |
| outputs=[chatbot_state, chatbot_interface] | |
| ) | |
| # Clear chat handler | |
| def handle_clear_chat(chatbot): | |
| if chatbot is not None: | |
| chatbot.chat_history = [] | |
| return chatbot, [] | |
| clear_button.click( | |
| fn=handle_clear_chat, | |
| inputs=[chatbot_state], | |
| outputs=[chatbot_state, chatbot_interface] | |
| ) | |
| return interface | |
| # Launch the interface | |
| demo = create_gradio_interface() | |
| demo.launch(share=True) |