feat: organising tasks into categories
Browse files
app.py
CHANGED
@@ -7,7 +7,32 @@ import pandas as pd
|
|
7 |
_ORIGINAL_DF = pd.read_csv("./data/benchmark.csv")
|
8 |
_METRICS = ["MCC", "F1", "ACC"]
|
9 |
_AGGREGATION_METHODS = ["mean", "max", "min", "median"]
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
_BIBTEX = """@article{DallaTorre2023TheNT,
|
13 |
title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics},
|
@@ -34,8 +59,13 @@ def format_number(x):
|
|
34 |
|
35 |
|
36 |
def get_dataset(
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
):
|
|
|
39 |
|
40 |
aggr_fn = getattr(np, aggregation_method)
|
41 |
scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn)
|
@@ -80,8 +110,22 @@ with gr.Blocks() as demo:
|
|
80 |
)
|
81 |
|
82 |
with gr.Row():
|
83 |
-
|
84 |
-
choices=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
)
|
86 |
|
87 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
@@ -93,23 +137,6 @@ with gr.Blocks() as demo:
|
|
93 |
with gr.TabItem("π Metrics", elem_id="od-benchmark-tab-table", id=1):
|
94 |
gr.Markdown("Hey hey hey", elem_classes="markdown-text")
|
95 |
|
96 |
-
# with gr.TabItem("βοΈβ¨ Request a model here!", elem_id="od-benchmark-tab-table",
|
97 |
-
# id=2):
|
98 |
-
# with gr.Column():
|
99 |
-
# gr.Markdown("# βοΈβ¨ Request results for a new model here!",
|
100 |
-
# elem_classes="markdown-text")
|
101 |
-
# with gr.Column():
|
102 |
-
# gr.Markdown("Select a dataset:", elem_classes="markdown-text")
|
103 |
-
# with gr.Column():
|
104 |
-
# model_name_textbox = gr.Textbox(
|
105 |
-
# label="Model name (user_name/model_name)")
|
106 |
-
# chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset",
|
107 |
-
# visible=False, value=True,
|
108 |
-
# interactive=False)
|
109 |
-
# with gr.Column():
|
110 |
-
# mdw_submission_result = gr.Markdown()
|
111 |
-
# btn_submitt = gr.Button(value="π Request")
|
112 |
-
|
113 |
gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")
|
114 |
|
115 |
with gr.Row():
|
@@ -121,24 +148,34 @@ with gr.Blocks() as demo:
|
|
121 |
elem_id="citation-button",
|
122 |
).style(show_copy_button=True)
|
123 |
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
get_dataset,
|
126 |
-
inputs=[
|
127 |
outputs=dataframe,
|
128 |
)
|
129 |
metric_choice.change(
|
130 |
get_dataset,
|
131 |
-
inputs=[
|
132 |
outputs=dataframe,
|
133 |
)
|
134 |
aggr_choice.change(
|
135 |
get_dataset,
|
136 |
-
inputs=[
|
137 |
outputs=dataframe,
|
138 |
)
|
139 |
demo.load(
|
140 |
fn=get_dataset,
|
141 |
-
inputs=[
|
142 |
outputs=dataframe,
|
143 |
)
|
144 |
|
|
|
7 |
_ORIGINAL_DF = pd.read_csv("./data/benchmark.csv")
|
8 |
_METRICS = ["MCC", "F1", "ACC"]
|
9 |
_AGGREGATION_METHODS = ["mean", "max", "min", "median"]
|
10 |
+
_TASKS = {
|
11 |
+
"histone_marks": [
|
12 |
+
"H4",
|
13 |
+
"H3",
|
14 |
+
"H3K14ac",
|
15 |
+
"H3K4me1",
|
16 |
+
"H3K4me3",
|
17 |
+
"H3K4me2",
|
18 |
+
"H3K36me3",
|
19 |
+
"H4ac",
|
20 |
+
"H3K79me3",
|
21 |
+
"H3K9ac",
|
22 |
+
],
|
23 |
+
"regulatory_elements": [
|
24 |
+
"promoter_no_tata",
|
25 |
+
"enhancers",
|
26 |
+
"enhancers_types",
|
27 |
+
"promoter_all",
|
28 |
+
"promoter_tata",
|
29 |
+
],
|
30 |
+
"RNA_production": [
|
31 |
+
"splice_sites_donors",
|
32 |
+
"splice_sites_all",
|
33 |
+
"splice_sites_acceptors",
|
34 |
+
],
|
35 |
+
}
|
36 |
|
37 |
_BIBTEX = """@article{DallaTorre2023TheNT,
|
38 |
title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics},
|
|
|
59 |
|
60 |
|
61 |
def get_dataset(
|
62 |
+
histone_tasks: List[str],
|
63 |
+
regulatory_tasks: List[str],
|
64 |
+
rna_tasks: List[str],
|
65 |
+
target_metric: str = "MCC",
|
66 |
+
aggregation_method: str = "mean",
|
67 |
):
|
68 |
+
tasks = histone_tasks + regulatory_tasks + rna_tasks
|
69 |
|
70 |
aggr_fn = getattr(np, aggregation_method)
|
71 |
scores = _ORIGINAL_DF[target_metric].apply(retrieve_array_from_text).apply(aggr_fn)
|
|
|
110 |
)
|
111 |
|
112 |
with gr.Row():
|
113 |
+
regulatory_tasks = gr.CheckboxGroup(
|
114 |
+
choices=_TASKS["regulatory_elements"],
|
115 |
+
value=_TASKS["regulatory_elements"],
|
116 |
+
label="Regulatory Elements Downstream Tasks",
|
117 |
+
info="Human data.",
|
118 |
+
)
|
119 |
+
rna_tasks = gr.CheckboxGroup(
|
120 |
+
choices=_TASKS["RNA_production"],
|
121 |
+
value=_TASKS["RNA_production"],
|
122 |
+
label="RNA Production Downstream tasks.",
|
123 |
+
info="Human data.",
|
124 |
+
)
|
125 |
+
histone_tasks = gr.CheckboxGroup(
|
126 |
+
choices=_TASKS["histone_marks"],
|
127 |
+
label="Histone Modification Downstream Tasks",
|
128 |
+
info="Yeast data.",
|
129 |
)
|
130 |
|
131 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
|
|
137 |
with gr.TabItem("π Metrics", elem_id="od-benchmark-tab-table", id=1):
|
138 |
gr.Markdown("Hey hey hey", elem_classes="markdown-text")
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
gr.Markdown(f"Last updated on **{_LAST_UPDATED}**", elem_classes="markdown-text")
|
141 |
|
142 |
with gr.Row():
|
|
|
148 |
elem_id="citation-button",
|
149 |
).style(show_copy_button=True)
|
150 |
|
151 |
+
histone_tasks.change(
|
152 |
+
get_dataset,
|
153 |
+
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
|
154 |
+
outputs=dataframe,
|
155 |
+
)
|
156 |
+
regulatory_tasks.change(
|
157 |
+
get_dataset,
|
158 |
+
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
|
159 |
+
outputs=dataframe,
|
160 |
+
)
|
161 |
+
rna_tasks.change(
|
162 |
get_dataset,
|
163 |
+
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
|
164 |
outputs=dataframe,
|
165 |
)
|
166 |
metric_choice.change(
|
167 |
get_dataset,
|
168 |
+
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
|
169 |
outputs=dataframe,
|
170 |
)
|
171 |
aggr_choice.change(
|
172 |
get_dataset,
|
173 |
+
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
|
174 |
outputs=dataframe,
|
175 |
)
|
176 |
demo.load(
|
177 |
fn=get_dataset,
|
178 |
+
inputs=[histone_tasks, regulatory_tasks, rna_tasks, metric_choice, aggr_choice],
|
179 |
outputs=dataframe,
|
180 |
)
|
181 |
|