Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
from typing import Any, Mapping | |
import torch | |
from torch import nn | |
from mmaudio.ext.synchformer.motionformer import MotionFormer | |
class Synchformer(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.vfeat_extractor = MotionFormer(extract_features=True, | |
factorize_space_time=True, | |
agg_space_module='TransformerEncoderLayer', | |
agg_time_module='torch.nn.Identity', | |
add_global_repr=False) | |
# self.vfeat_extractor = instantiate_from_config(vfeat_extractor) | |
# self.afeat_extractor = instantiate_from_config(afeat_extractor) | |
# # bridging the s3d latent dim (1024) into what is specified in the config | |
# # to match e.g. the transformer dim | |
# self.vproj = instantiate_from_config(vproj) | |
# self.aproj = instantiate_from_config(aproj) | |
# self.transformer = instantiate_from_config(transformer) | |
def forward(self, vis): | |
B, S, Tv, C, H, W = vis.shape | |
vis = vis.permute(0, 1, 3, 2, 4, 5) # (B, S, C, Tv, H, W) | |
# feat extractors return a tuple of segment-level and global features (ignored for sync) | |
# (B, S, tv, D), e.g. (B, 7, 8, 768) | |
vis = self.vfeat_extractor(vis) | |
return vis | |
def load_state_dict(self, sd: Mapping[str, Any], strict: bool = True): | |
# discard all entries except vfeat_extractor | |
sd = {k: v for k, v in sd.items() if k.startswith('vfeat_extractor')} | |
return super().load_state_dict(sd, strict) | |
if __name__ == "__main__": | |
model = Synchformer().cuda().eval() | |
sd = torch.load('./ext_weights/synchformer_state_dict.pth', weights_only=True) | |
model.load_state_dict(sd) | |
vid = torch.randn(2, 7, 16, 3, 224, 224).cuda() | |
features = model.extract_vfeats(vid, for_loop=False).detach().cpu() | |
print(features.shape) | |
# extract and save the state dict only | |
# sd = torch.load('./ext_weights/sync_model_audioset.pt')['model'] | |
# torch.save(sd, './ext_weights/synchformer_state_dict.pth') | |