philippds's picture
Update app.py
7393cd1 verified
raw
history blame
6.95 kB
import os
import json
import requests
import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from apscheduler.schedulers.background import BackgroundScheduler
from tqdm.contrib.concurrent import thread_map
from utils import make_clickable_model, make_clickable_user
DATASET_REPO_URL = (
"https://huggingface.co/datasets/hivex-research/hivex-leaderboard-data"
)
DATASET_REPO_ID = "hivex-research/hivex-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")
block = gr.Blocks()
api = HfApi(token=HF_TOKEN)
hivex_envs = [
{
"title": "Wind Farm Control",
"hivex_env": "hivex-wind-farm-control",
"task_count": 2,
},
{
"title": "Wildfire Resource Management",
"hivex_env": "hivex-wildfire-resource-management",
"task_count": 3,
},
{
"title": "Drone-Based Reforestation",
"hivex_env": "hivex-drone-based-reforestation",
"task_count": 7,
},
{
"title": "Ocean Plastic Collection",
"hivex_env": "hivex-ocean-plastic-collection",
"task_count": 4,
},
{
"title": "Aerial Wildfire Suppression",
"hivex_env": "hivex-aerial-wildfire-suppression",
"task_count": 9,
},
]
def restart():
print("RESTART")
api.restart_space(repo_id="hivex-research/hivex-leaderboard")
def download_leaderboard_dataset():
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
return path
def get_model_ids(hivex_env):
api = HfApi()
models = api.list_models(filter=hivex_env)
model_ids = [x.modelId for x in models]
return model_ids
def get_metadata(model_id):
try:
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
# def parse_metrics_accuracy(meta):
# if "model-index" not in meta:
# return None
# result = meta["model-index"][0]["results"]
# metrics = result[0]["metrics"]
# accuracy = metrics[0]["value"]
# return accuracy
# def parse_rewards(accuracy):
# default_std = -1000
# default_reward = -1000
# if accuracy != None:
# accuracy = str(accuracy)
# parsed = accuracy.split("+/-")
# if len(parsed) > 1:
# mean_reward = float(parsed[0].strip())
# std_reward = float(parsed[1].strip())
# elif len(parsed) == 1: # only mean reward
# mean_reward = float(parsed[0].strip())
# std_reward = float(0)
# else:
# mean_reward = float(default_std)
# std_reward = float(default_reward)
# else:
# mean_reward = float(default_std)
# std_reward = float(default_reward)
# return mean_reward, std_reward
# def rank_dataframe(dataframe):
# dataframe = dataframe.sort_values(
# by=["Cumulative Reward", "User", "Model"], ascending=False
# )
# if not "Ranking" in dataframe.columns:
# dataframe.insert(0, "Ranking", [i for i in range(1, len(dataframe) + 1)])
# else:
# dataframe["Ranking"] = [i for i in range(1, len(dataframe) + 1)]
# return dataframe
def update_leaderboard_dataset_parallel(hivex_env, path):
# Get model ids associated with hivex_env
model_ids = get_model_ids(hivex_env)
def process_model(model_id):
meta = get_metadata(model_id)
# LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
if meta is None:
return None
user_id = model_id.split("/")[0]
row = {}
row["User"] = user_id
row["Model"] = model_id
results = meta["model-index"][0]["results"][0]
row["Task"] = results["task"]["task-id"]
results_metrics = results["metrics"]
for result in results_metrics:
row[result["name"]] = float(result["value"].split("+/-")[0].strip())
return row
data = list(thread_map(process_model, model_ids, desc="Processing models"))
# Filter out None results (models with no metadata)
data = [row for row in data if row is not None]
# ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
# new_history = ranked_dataframe
new_history = pd.DataFrame.from_records(data)
file_path = path + "/" + hivex_env + ".csv"
new_history.to_csv(file_path, index=False)
return ranked_dataframe
def run_update_dataset():
path_ = download_leaderboard_dataset()
for i in range(0, len(hivex_envs)):
hivex_env = hivex_envs[i]
update_leaderboard_dataset_parallel(hivex_env["hivex_env"], path_)
api.upload_folder(
folder_path=path_,
repo_id="hivex-research/hivex-leaderboard-data",
repo_type="dataset",
commit_message="Update dataset",
)
def get_data(rl_env, task, path) -> pd.DataFrame:
"""
Get data from rl_env, filter by the given task, and drop the Task column.
:return: filtered data as a pandas DataFrame without the Task column
"""
csv_path = path + "/" + rl_env + ".csv"
data = pd.read_csv(csv_path)
# Filter the data to only include rows where the "Task" column matches the given task
filtered_data = data[data["Task"] == task]
# Drop the "Task" column
filtered_data = filtered_data.drop(columns=["Task"])
# Convert User and Model columns to clickable links
for index, row in filtered_data.iterrows():
user_id = row["User"]
filtered_data.loc[index, "User"] = make_clickable_user(user_id)
model_id = row["Model"]
filtered_data.loc[index, "Model"] = make_clickable_model(model_id)
return filtered_data
run_update_dataset()
block = gr.Blocks()
with block:
with gr.Row(elem_id="header-row"):
# TITLE + "<p>Total models: " + str(len(HARD_LEADERBOARD_DF))+ "</p>"
gr.HTML("<h1>HIVEX-Leaderboard</h1>")
path_ = download_leaderboard_dataset()
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# ENVIRONMENT TABS
with gr.Tabs(elem_classes="tab-buttons") as tabs:
for i in range(0, len(hivex_envs)):
hivex_env = hivex_envs[i]
with gr.Tab(hivex_env["title"]) as env_tabs:
# TASK TABS
for j in range(0, hivex_env["task_count"]):
task = "Task " + str(j + 1)
with gr.TabItem(f"Task {j}"):
with gr.Row():
gr_dataframe = gr.components.Dataframe(value=get_data(hivex_env["hivex_env"], j, path_), headers=["User", "Model"], datatype=["markdown", "markdown"], row_count=(100, 'fixed'))
scheduler = BackgroundScheduler()
scheduler.add_job(restart, "interval", seconds=86400)
scheduler.start()
block.launch()