controlnetOverMask / pipeline_stable_diffusion_controlnet_inpaint.py
hirol's picture
Upload 27 files
a637d5e
raw
history blame
27.3 kB
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import PIL.Image
import numpy as np
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import *
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> # !pip install opencv-python transformers accelerate
>>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, UniPCMultistepScheduler
>>> from diffusers.utils import load_image
>>> import numpy as np
>>> import torch
>>> import cv2
>>> from PIL import Image
>>> # download an image
>>> image = load_image(
... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
... )
>>> image = np.array(image)
>>> mask_image = load_image(
... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
... )
>>> mask_image = np.array(mask_image)
>>> # get canny image
>>> canny_image = cv2.Canny(image, 100, 200)
>>> canny_image = canny_image[:, :, None]
>>> canny_image = np.concatenate([canny_image, canny_image, canny_image], axis=2)
>>> canny_image = Image.fromarray(canny_image)
>>> # load control net and stable diffusion v1-5
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
... "runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> # speed up diffusion process with faster scheduler and memory optimization
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
>>> # remove following line if xformers is not installed
>>> pipe.enable_xformers_memory_efficient_attention()
>>> pipe.enable_model_cpu_offload()
>>> # generate image
>>> generator = torch.manual_seed(0)
>>> image = pipe(
... "futuristic-looking doggo",
... num_inference_steps=20,
... generator=generator,
... image=image,
... control_image=canny_image,
... mask_image=mask_image
... ).images[0]
```
"""
def prepare_mask_and_masked_image(image, mask):
"""
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
``image`` and ``1`` for the ``mask``.
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
Args:
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
Raises:
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
(ot the other way around).
Returns:
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
dimensions: ``batch x channels x height x width``.
"""
if isinstance(image, torch.Tensor):
if not isinstance(mask, torch.Tensor):
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
# Batch single image
if image.ndim == 3:
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
image = image.unsqueeze(0)
# Batch and add channel dim for single mask
if mask.ndim == 2:
mask = mask.unsqueeze(0).unsqueeze(0)
# Batch single mask or add channel dim
if mask.ndim == 3:
# Single batched mask, no channel dim or single mask not batched but channel dim
if mask.shape[0] == 1:
mask = mask.unsqueeze(0)
# Batched masks no channel dim
else:
mask = mask.unsqueeze(1)
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
# Check image is in [-1, 1]
if image.min() < -1 or image.max() > 1:
raise ValueError("Image should be in [-1, 1] range")
# Check mask is in [0, 1]
if mask.min() < 0 or mask.max() > 1:
raise ValueError("Mask should be in [0, 1] range")
# Binarize mask
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
# Image as float32
image = image.to(dtype=torch.float32)
elif isinstance(mask, torch.Tensor):
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
else:
# preprocess image
if isinstance(image, (PIL.Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
class StableDiffusionControlNetInpaintPipeline(StableDiffusionControlNetPipeline):
r"""
Pipeline for text-guided image inpainting using Stable Diffusion with ControlNet guidance.
This model inherits from [`StableDiffusionControlNetPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
controlnet ([`ControlNetModel`]):
Provides additional conditioning to the unet during the denoising process
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def prepare_mask_latents(
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
)
mask = mask.to(device=device, dtype=dtype)
masked_image = masked_image.to(device=device, dtype=dtype)
# encode the mask image into latents space so we can concatenate it to the latents
if isinstance(generator, list):
masked_image_latents = [
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
for i in range(batch_size)
]
masked_image_latents = torch.cat(masked_image_latents, dim=0)
else:
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
masked_image_latents = self.vae.config.scaling_factor * masked_image_latents
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
return mask, masked_image_latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
control_image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] = None,
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
controlnet_conditioning_scale: float = 1.0,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
be masked out with `mask_image` and repainted according to `prompt`.
control_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`):
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can
also be accepted as an image. The control image is automatically resized to fit the output image.
mask_image (`PIL.Image.Image`):
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
instead of 3, so the expected shape would be `(B, H, W, 1)`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
to the residual in the original unet.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height, width = self._default_height_width(height, width, control_image)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, control_image, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare image
control_image = self.prepare_image(
control_image,
width,
height,
batch_size * num_images_per_prompt,
num_images_per_prompt,
device,
self.controlnet.dtype,
)
if do_classifier_free_guidance:
control_image = torch.cat([control_image] * 2)
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 6. Prepare latent variables
num_channels_latents = self.controlnet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# EXTRA: prepare mask latents
mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
mask, masked_image_latents = self.prepare_mask_latents(
mask,
masked_image,
batch_size * num_images_per_prompt,
height,
width,
prompt_embeds.dtype,
device,
generator,
do_classifier_free_guidance,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
down_block_res_samples, mid_block_res_sample = self.controlnet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
controlnet_cond=control_image,
return_dict=False,
)
down_block_res_samples = [
down_block_res_sample * controlnet_conditioning_scale
for down_block_res_sample in down_block_res_samples
]
mid_block_res_sample *= controlnet_conditioning_scale
# predict the noise residual
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
self.controlnet.to("cpu")
torch.cuda.empty_cache()
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)