|
|
|
|
|
|
|
from diffusers.schedulers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from diffusers.utils import is_accelerate_available |
|
from diffusers.pipelines.controlnet.pipeline_controlnet import * |
|
|
|
import os |
|
import sys |
|
from safetensors import safe_open |
|
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
sys.path.append(BASE_DIR) |
|
|
|
from adapter.resampler import ProjPlusModel |
|
from adapter.attention_processor import RefSAttnProcessor2_0, RefLoraSAttnProcessor2_0, IPAttnProcessor2_0, LoRAIPAttnProcessor2_0 |
|
|
|
|
|
class PipIpaControlNet(StableDiffusionControlNetPipeline): |
|
_optional_components = [] |
|
|
|
def __init__( |
|
self, |
|
vae, |
|
reference_unet, |
|
unet, |
|
tokenizer, |
|
text_encoder, |
|
controlnet, |
|
image_encoder, |
|
ImgProj, |
|
ip_ckpt, |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
): |
|
super().__init__(vae, text_encoder, tokenizer, unet, controlnet, scheduler, safety_checker, feature_extractor) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
reference_unet=reference_unet, |
|
unet=unet, |
|
controlnet=controlnet, |
|
scheduler=scheduler, |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
image_encoder=image_encoder, |
|
ImgProj=ImgProj, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.clip_image_processor = CLIPImageProcessor() |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.ref_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False, |
|
) |
|
self.cond_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, |
|
do_convert_rgb=True, |
|
do_normalize=False, |
|
) |
|
self.ip_ckpt = ip_ckpt |
|
self.num_tokens = 4 |
|
|
|
self.image_proj_model = self.init_proj() |
|
self.load_ip_adapter() |
|
|
|
def init_proj(self): |
|
image_proj_model = ProjPlusModel( |
|
cross_attention_dim=self.unet.config.cross_attention_dim, |
|
id_embeddings_dim=512, |
|
clip_embeddings_dim=self.image_encoder.config.hidden_size, |
|
num_tokens=self.num_tokens, |
|
).to(self.unet.device, dtype=torch.float16) |
|
return image_proj_model |
|
|
|
def load_ip_adapter(self): |
|
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": |
|
state_dict = {"image_proj": {}, "ip_adapter": {}} |
|
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
if key.startswith("image_proj."): |
|
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("ip_adapter."): |
|
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(self.ip_ckpt, map_location="cpu") |
|
self.image_proj_model.load_state_dict(state_dict["image_proj"]) |
|
ip_layers = torch.nn.ModuleList(self.unet.attn_processors.values()) |
|
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
def enable_vae_slicing(self): |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
self.vae.disable_slicing() |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
def _execution_device(self): |
|
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
width, |
|
height, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor( |
|
shape, generator=generator, device=device, dtype=dtype |
|
) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_condition( |
|
self, |
|
cond_image, |
|
width, |
|
height, |
|
device, |
|
dtype, |
|
do_classififer_free_guidance=False, |
|
): |
|
image = self.cond_image_processor.preprocess( |
|
cond_image, height=height, width=width |
|
).to(dtype=torch.float32) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classififer_free_guidance: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
def get_image_embeds(self, clip_image=None, faceid_embeds=None): |
|
with torch.no_grad(): |
|
clip_image_embeds = self.image_encoder(clip_image.to(self.device, dtype=torch.float16), |
|
output_hidden_states=True).hidden_states[-2] |
|
uncond_clip_image_embeds = self.image_encoder( |
|
torch.zeros_like(clip_image).to(self.device, dtype=torch.float16), output_hidden_states=True |
|
).hidden_states[-2] |
|
|
|
faceid_embeds = faceid_embeds.to(self.device, dtype=torch.float16) |
|
image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds) |
|
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds),uncond_clip_image_embeds) |
|
return image_prompt_embeds, uncond_image_prompt_embeds |
|
|
|
def set_scale(self, scale, lora_scale): |
|
for attn_processor in self.unet.attn_processors.values(): |
|
if isinstance(attn_processor, RefLoraSAttnProcessor2_0): |
|
attn_processor.scale = scale |
|
attn_processor.lora_scale = lora_scale |
|
|
|
|
|
|
|
def set_ipa_scale(self, ipa_scale, lora_scale): |
|
for attn_processor in self.unet.attn_processors.values(): |
|
if isinstance(attn_processor, LoRAIPAttnProcessor2_0): |
|
attn_processor.scale = ipa_scale |
|
attn_processor.lora_scale = lora_scale |
|
elif isinstance(attn_processor, IPAttnProcessor2_0): |
|
attn_processor.scale = ipa_scale |
|
attn_processor.lora_scale = lora_scale |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt, |
|
null_prompt, |
|
negative_prompt, |
|
ref_image, |
|
width, |
|
height, |
|
num_inference_steps, |
|
guidance_scale, |
|
pose_image=None, |
|
ref_clip_image=None, |
|
face_clip_image=None, |
|
faceid_embeds=None, |
|
num_images_per_prompt=1, |
|
image_scale=1.0, |
|
ipa_scale=0.0, |
|
s_lora_scale=0.0, |
|
c_lora_scale=0.0, |
|
num_samples=1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
clip_skip: Optional[int] = None, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
guess_mode: bool = False, |
|
control_guidance_start: Union[float, List[float]] = 0.0, |
|
control_guidance_end: Union[float, List[float]] = 1.0, |
|
**kwargs, |
|
): |
|
|
|
if face_clip_image is None: |
|
self.set_scale(image_scale, lora_scale=0.0) |
|
self.set_ipa_scale(ipa_scale=0.0, lora_scale=0.0) |
|
else: |
|
self.set_scale(image_scale, lora_scale=s_lora_scale) |
|
self.set_ipa_scale(ipa_scale, lora_scale=c_lora_scale) |
|
|
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet |
|
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): |
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start] |
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): |
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end] |
|
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): |
|
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 |
|
control_guidance_start, control_guidance_end = ( |
|
mult * [control_guidance_start], |
|
mult * [control_guidance_end], |
|
) |
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
device = self._execution_device |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._clip_skip = clip_skip |
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
batch_size = 1 |
|
if pose_image is not None: |
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
image = self.prepare_image( |
|
image=pose_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
if do_classifier_free_guidance and not guess_mode: |
|
image = image.chunk(2)[0] |
|
height, width = image.shape[-2:] |
|
else: |
|
assert False |
|
|
|
|
|
|
|
text_encoder_lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
if face_clip_image is not None: |
|
|
|
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(face_clip_image, faceid_embeds) |
|
|
|
bs_embed, seq_len, _ = image_prompt_embeds.shape |
|
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) |
|
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) |
|
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) |
|
|
|
if ref_clip_image is not None: |
|
with torch.no_grad(): |
|
image_embeds = self.image_encoder(ref_clip_image.to(device, dtype=prompt_embeds.dtype), |
|
output_hidden_states=True).hidden_states[-2] |
|
image_null_embeds = \ |
|
self.image_encoder(torch.zeros_like(ref_clip_image).to(device, dtype=prompt_embeds.dtype), |
|
output_hidden_states=True).hidden_states[-2] |
|
cloth_proj_embed = self.ImgProj(image_embeds) |
|
cloth_null_embeds = self.ImgProj(image_null_embeds) |
|
|
|
else: |
|
null_prompt_embeds, _ = self.encode_prompt( |
|
null_prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds_control = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
if ref_clip_image is not None: |
|
null_prompt_embeds = torch.cat([cloth_null_embeds, cloth_proj_embed]) |
|
else: |
|
null_prompt_embeds = torch.cat([negative_prompt_embeds, null_prompt_embeds]) |
|
if face_clip_image is not None: |
|
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) |
|
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) |
|
else: |
|
prompt_embeds = prompt_embeds |
|
negative_prompt_embeds = negative_prompt_embeds |
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
width, |
|
height, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
ref_image_tensor = ref_image.to( |
|
dtype=self.vae.dtype, device=self.vae.device |
|
) |
|
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean |
|
ref_image_latents = ref_image_latents * 0.18215 |
|
if pose_image is not None: |
|
|
|
controlnet_keep = [] |
|
for i in range(len(timesteps)): |
|
keeps = [ |
|
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) |
|
for s, e in zip(control_guidance_start, control_guidance_end) |
|
] |
|
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
if i == 0: |
|
_ = self.reference_unet( |
|
ref_image_latents.repeat( |
|
(2 if do_classifier_free_guidance else 1), 1, 1, 1 |
|
), |
|
torch.zeros_like(t), |
|
encoder_hidden_states=null_prompt_embeds, |
|
return_dict=False, |
|
) |
|
|
|
|
|
sa_hidden_states = {} |
|
for name in self.reference_unet.attn_processors.keys(): |
|
sa_hidden_states[name] = self.reference_unet.attn_processors[name].cache["hidden_states"][ |
|
1].unsqueeze(0) |
|
|
|
|
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat( |
|
batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
if pose_image is not None: |
|
|
|
if guess_mode and self.do_classifier_free_guidance: |
|
|
|
control_model_input = latents |
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t) |
|
controlnet_prompt_embeds = prompt_embeds_control.chunk(2)[1] |
|
|
|
else: |
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds_control |
|
if isinstance(controlnet_keep[i], list): |
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] |
|
else: |
|
controlnet_cond_scale = controlnet_conditioning_scale |
|
if isinstance(controlnet_cond_scale, list): |
|
controlnet_cond_scale = controlnet_cond_scale[0] |
|
cond_scale = controlnet_cond_scale * controlnet_keep[i] |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
t, |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond=image, |
|
conditioning_scale=cond_scale, |
|
guess_mode=guess_mode, |
|
return_dict=False, |
|
) |
|
|
|
|
|
down_block_res_samples_con = [] |
|
down_block_res_samples_uncon = [] |
|
for down_block in down_block_res_samples: |
|
down_block_res_samples_con.append(down_block[1]) |
|
down_block_res_samples_uncon.append(down_block[0]) |
|
|
|
noise_pred = self.unet( |
|
latent_model_input[0].unsqueeze(0), |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs={ |
|
"sa_hidden_states": sa_hidden_states, |
|
}, |
|
timestep_cond=timestep_cond, |
|
down_block_additional_residuals=down_block_res_samples_con, |
|
mid_block_additional_residual=mid_block_res_sample[1], |
|
added_cond_kwargs=None, |
|
return_dict=False, |
|
)[0] |
|
|
|
unc_noise_pred = self.unet( |
|
latent_model_input[1].unsqueeze(0), |
|
t, |
|
encoder_hidden_states=negative_prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
down_block_additional_residuals=down_block_res_samples_uncon, |
|
mid_block_additional_residual=mid_block_res_sample[0], |
|
added_cond_kwargs=None, |
|
return_dict=False, |
|
)[0] |
|
|
|
else: |
|
noise_pred = self.unet( |
|
latent_model_input[1].unsqueeze(0), |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs={ |
|
"sa_hidden_states": sa_hidden_states, |
|
}, |
|
timestep_cond=timestep_cond, |
|
added_cond_kwargs=None, |
|
return_dict=False, |
|
)[0] |
|
|
|
unc_noise_pred = self.unet( |
|
latent_model_input[0].unsqueeze(0), |
|
t, |
|
encoder_hidden_states=negative_prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
added_cond_kwargs=None, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
|
|
noise_pred_uncond, noise_pred_text = unc_noise_pred, noise_pred |
|
|
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs, return_dict=False |
|
)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] |
|
do_denormalize = [True] * image.shape[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) |
|
|
|
|
|
|