hinojosachapel's picture
Upload folder using huggingface_hub
75f9c56 verified
raw
history blame
2.2 kB
from transformers import pipeline, Conversation
import gradio as gr
from datetime import datetime
from transformers.utils import logging
logging.set_verbosity_error()
# Info about ['google/gemma-2b-it'](https://huggingface.co/google/gemma-2b-it)
chatbot = pipeline(task="conversational",
model="google/gemma-7b-it")
def get_job_description(company_name, sector, job_position):
start_time = datetime.now()
messages = [
{
"role": "user",
"content": f"You are the bot director of Human Resources at { company_name }, a company of the { sector } sector. " +
"Your goal is to hire people in different departments of the company. " +
"Generate a text that describes the job in a creative, modern, formal and attractive way."
},
{
"role": "assistant",
"content": "Tell me what job role it is and I'll generate the description for you!"
},
{
"role": "user",
"content": job_position
},
{
"role": "assistant",
"content": "Description:"
}
]
conversation = Conversation(messages)
conversation = chatbot(conversation, do_sample=True, max_new_tokens=600, temperature=1)
response = conversation.messages[-1]["content"]
delta_time = datetime.now() - start_time
return response, delta_time
with gr.Blocks() as demo:
gr.Markdown(
"""
# Job Description generator
### This SLM demo uses ['google/gemma-2b-it'](https://huggingface.co/google/gemma-2b-it)
""")
interface = gr.Interface(
fn = get_job_description,
inputs = [gr.Textbox(placeholder="Enter the company name", label="Company name"),
gr.Textbox(placeholder="Enter the company sector", label="Company sector"),
gr.Textbox(placeholder="Enter the job position", label="Job position")],
outputs = [gr.Markdown(),
gr.Textbox(label="Elapsed time")]
)
demo.launch(server_port=7860)
# demo.launch(share=True, server_port=7860)