Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import login
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 5 |
+
from peft import PeftModel
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
# Log in using the secret token
|
| 9 |
+
login(os.environ["HF_TOKEN"])
|
| 10 |
+
|
| 11 |
+
# Base model
|
| 12 |
+
base_model = "mistralai/Mistral-7B-v0.3"
|
| 13 |
+
|
| 14 |
+
# Your adapter model on HF
|
| 15 |
+
adapter_model = "hin123123/theralingua-mistral-7b-word"
|
| 16 |
+
|
| 17 |
+
# Quantization config for efficiency
|
| 18 |
+
quantization_config = BitsAndBytesConfig(
|
| 19 |
+
load_in_4bit=True,
|
| 20 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 21 |
+
bnb_4bit_use_double_quant=True,
|
| 22 |
+
bnb_4bit_quant_type="nf4"
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Load tokenizer
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 27 |
+
|
| 28 |
+
# Load base model with low CPU memory usage
|
| 29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
+
base_model,
|
| 31 |
+
quantization_config=quantization_config,
|
| 32 |
+
device_map="auto",
|
| 33 |
+
low_cpu_mem_usage=True # Streams to GPU if available, avoids full RAM load
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Apply LoRA adapter
|
| 37 |
+
model = PeftModel.from_pretrained(model, adapter_model)
|
| 38 |
+
|
| 39 |
+
def generate_text(input_text, max_new_tokens=100, temperature=0.7):
|
| 40 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
| 41 |
+
|
| 42 |
+
with torch.inference_mode():
|
| 43 |
+
outputs = model.generate(
|
| 44 |
+
**inputs,
|
| 45 |
+
max_new_tokens=max_new_tokens,
|
| 46 |
+
temperature=temperature,
|
| 47 |
+
do_sample=True,
|
| 48 |
+
top_p=0.9
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 52 |
+
return generated
|
| 53 |
+
|
| 54 |
+
demo = gr.Interface(
|
| 55 |
+
fn=generate_text,
|
| 56 |
+
inputs=[
|
| 57 |
+
gr.Textbox(label="Input Text", placeholder="Enter your prompt here..."),
|
| 58 |
+
gr.Slider(label="Max New Tokens", minimum=50, maximum=500, value=100, step=50),
|
| 59 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=1.5, value=0.7, step=0.1)
|
| 60 |
+
],
|
| 61 |
+
outputs=gr.Textbox(label="Generated Output"),
|
| 62 |
+
title="Theralingua-Mistral-7B-Word Demo",
|
| 63 |
+
description="Enter text to generate output from the model."
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Launch the demo (Spaces handles sharing automatically)
|
| 67 |
+
demo.launch()
|