Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| DEIM: DETR with Improved Matching for Fast Convergence | |
| Copyright (c) 2024 The DEIM Authors. All Rights Reserved. | |
| --------------------------------------------------------------------------------- | |
| Modified from D-FINE (https://github.com/Peterande/D-FINE) | |
| Copyright (c) 2023 . All Rights Reserved. | |
| """ | |
| import math | |
| from typing import List | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| def inverse_sigmoid(x: torch.Tensor, eps: float=1e-5) -> torch.Tensor: | |
| x = x.clip(min=0., max=1.) | |
| return torch.log(x.clip(min=eps) / (1 - x).clip(min=eps)) | |
| def bias_init_with_prob(prior_prob=0.01): | |
| """initialize conv/fc bias value according to a given probability value.""" | |
| bias_init = float(-math.log((1 - prior_prob) / prior_prob)) | |
| return bias_init | |
| def deformable_attention_core_func(value, value_spatial_shapes, sampling_locations, attention_weights): | |
| """ | |
| Args: | |
| value (Tensor): [bs, value_length, n_head, c] | |
| value_spatial_shapes (Tensor|List): [n_levels, 2] | |
| value_level_start_index (Tensor|List): [n_levels] | |
| sampling_locations (Tensor): [bs, query_length, n_head, n_levels, n_points, 2] | |
| attention_weights (Tensor): [bs, query_length, n_head, n_levels, n_points] | |
| Returns: | |
| output (Tensor): [bs, Length_{query}, C] | |
| """ | |
| bs, _, n_head, c = value.shape | |
| _, Len_q, _, n_levels, n_points, _ = sampling_locations.shape | |
| split_shape = [h * w for h, w in value_spatial_shapes] | |
| value_list = value.split(split_shape, dim=1) | |
| sampling_grids = 2 * sampling_locations - 1 | |
| sampling_value_list = [] | |
| for level, (h, w) in enumerate(value_spatial_shapes): | |
| # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_ | |
| value_l_ = value_list[level].flatten(2).permute( | |
| 0, 2, 1).reshape(bs * n_head, c, h, w) | |
| # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2 | |
| sampling_grid_l_ = sampling_grids[:, :, :, level].permute( | |
| 0, 2, 1, 3, 4).flatten(0, 1) | |
| # N_*M_, D_, Lq_, P_ | |
| sampling_value_l_ = F.grid_sample( | |
| value_l_, | |
| sampling_grid_l_, | |
| mode='bilinear', | |
| padding_mode='zeros', | |
| align_corners=False) | |
| sampling_value_list.append(sampling_value_l_) | |
| # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_*M_, 1, Lq_, L_*P_) | |
| attention_weights = attention_weights.permute(0, 2, 1, 3, 4).reshape( | |
| bs * n_head, 1, Len_q, n_levels * n_points) | |
| output = (torch.stack( | |
| sampling_value_list, dim=-2).flatten(-2) * | |
| attention_weights).sum(-1).reshape(bs, n_head * c, Len_q) | |
| return output.permute(0, 2, 1) | |
| def deformable_attention_core_func_v2(\ | |
| value: torch.Tensor, | |
| value_spatial_shapes, | |
| sampling_locations: torch.Tensor, | |
| attention_weights: torch.Tensor, | |
| num_points_list: List[int], | |
| method='default', | |
| value_shape='default', | |
| ): | |
| """ | |
| Args: | |
| value (Tensor): [bs, value_length, n_head, c] | |
| value_spatial_shapes (Tensor|List): [n_levels, 2] | |
| value_level_start_index (Tensor|List): [n_levels] | |
| sampling_locations (Tensor): [bs, query_length, n_head, n_levels * n_points, 2] | |
| attention_weights (Tensor): [bs, query_length, n_head, n_levels * n_points] | |
| Returns: | |
| output (Tensor): [bs, Length_{query}, C] | |
| """ | |
| if value_shape == 'default': | |
| bs, n_head, c, _ = value[0].shape | |
| elif value_shape == 'reshape': # reshape following RT-DETR | |
| bs, _, n_head, c = value.shape | |
| split_shape = [h * w for h, w in value_spatial_shapes] | |
| value = value.permute(0, 2, 3, 1).flatten(0, 1).split(split_shape, dim=-1) | |
| _, Len_q, _, _, _ = sampling_locations.shape | |
| # sampling_offsets [8, 480, 8, 12, 2] | |
| if method == 'default': | |
| sampling_grids = 2 * sampling_locations - 1 | |
| elif method == 'discrete': | |
| sampling_grids = sampling_locations | |
| sampling_grids = sampling_grids.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
| sampling_locations_list = sampling_grids.split(num_points_list, dim=-2) | |
| sampling_value_list = [] | |
| for level, (h, w) in enumerate(value_spatial_shapes): | |
| value_l = value[level].reshape(bs * n_head, c, h, w) | |
| sampling_grid_l: torch.Tensor = sampling_locations_list[level] | |
| if method == 'default': | |
| sampling_value_l = F.grid_sample( | |
| value_l, | |
| sampling_grid_l, | |
| mode='bilinear', | |
| padding_mode='zeros', | |
| align_corners=False) | |
| elif method == 'discrete': | |
| # n * m, seq, n, 2 | |
| sampling_coord = (sampling_grid_l * torch.tensor([[w, h]], device=value_l.device) + 0.5).to(torch.int64) | |
| # FIX ME? for rectangle input | |
| sampling_coord = sampling_coord.clamp(0, h - 1) | |
| sampling_coord = sampling_coord.reshape(bs * n_head, Len_q * num_points_list[level], 2) | |
| s_idx = torch.arange(sampling_coord.shape[0], device=value_l.device).unsqueeze(-1).repeat(1, sampling_coord.shape[1]) | |
| sampling_value_l: torch.Tensor = value_l[s_idx, :, sampling_coord[..., 1], sampling_coord[..., 0]] # n l c | |
| sampling_value_l = sampling_value_l.permute(0, 2, 1).reshape(bs * n_head, c, Len_q, num_points_list[level]) | |
| sampling_value_list.append(sampling_value_l) | |
| attn_weights = attention_weights.permute(0, 2, 1, 3).reshape(bs * n_head, 1, Len_q, sum(num_points_list)) | |
| weighted_sample_locs = torch.concat(sampling_value_list, dim=-1) * attn_weights | |
| output = weighted_sample_locs.sum(-1).reshape(bs, n_head * c, Len_q) | |
| return output.permute(0, 2, 1) | |
| def get_activation(act: str, inpace: bool=True): | |
| """get activation | |
| """ | |
| if act is None: | |
| return nn.Identity() | |
| elif isinstance(act, nn.Module): | |
| return act | |
| act = act.lower() | |
| if act == 'silu' or act == 'swish': | |
| m = nn.SiLU() | |
| elif act == 'relu': | |
| m = nn.ReLU() | |
| elif act == 'leaky_relu': | |
| m = nn.LeakyReLU() | |
| elif act == 'silu': | |
| m = nn.SiLU() | |
| elif act == 'gelu': | |
| m = nn.GELU() | |
| elif act == 'hardsigmoid': | |
| m = nn.Hardsigmoid() | |
| else: | |
| raise RuntimeError('') | |
| if hasattr(m, 'inplace'): | |
| m.inplace = inpace | |
| return m | |