Spaces:
Running
on
Zero
Running
on
Zero
| """Copyright(c) 2023 lyuwenyu. All Rights Reserved. | |
| Modifications Copyright (c) 2024 The DEIM Authors. All Rights Reserved. | |
| """ | |
| import math | |
| import copy | |
| import functools | |
| from collections import OrderedDict | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.nn.init as init | |
| from typing import List | |
| from .denoising import get_contrastive_denoising_training_group | |
| from .utils import bias_init_with_prob, get_activation, inverse_sigmoid | |
| from .utils import deformable_attention_core_func_v2 | |
| from ..core import register | |
| __all__ = ['RTDETRTransformerv2'] | |
| class MLP(nn.Module): | |
| def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act='relu'): | |
| super().__init__() | |
| self.num_layers = num_layers | |
| h = [hidden_dim] * (num_layers - 1) | |
| self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
| self.act = get_activation(act) | |
| def forward(self, x): | |
| for i, layer in enumerate(self.layers): | |
| x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) | |
| return x | |
| class MSDeformableAttention(nn.Module): | |
| def __init__( | |
| self, | |
| embed_dim=256, | |
| num_heads=8, | |
| num_levels=4, | |
| num_points=4, | |
| method='default', | |
| offset_scale=0.5, | |
| value_shape='default', | |
| ): | |
| """Multi-Scale Deformable Attention | |
| """ | |
| super(MSDeformableAttention, self).__init__() | |
| self.embed_dim = embed_dim | |
| self.num_heads = num_heads | |
| self.num_levels = num_levels | |
| self.offset_scale = offset_scale | |
| if isinstance(num_points, list): | |
| assert len(num_points) == num_levels, '' | |
| num_points_list = num_points | |
| else: | |
| num_points_list = [num_points for _ in range(num_levels)] | |
| self.num_points_list = num_points_list | |
| num_points_scale = [1/n for n in num_points_list for _ in range(n)] | |
| self.register_buffer('num_points_scale', torch.tensor(num_points_scale, dtype=torch.float32)) | |
| self.total_points = num_heads * sum(num_points_list) | |
| self.method = method | |
| self.head_dim = embed_dim // num_heads | |
| assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" | |
| self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2) | |
| self.attention_weights = nn.Linear(embed_dim, self.total_points) | |
| self.value_proj = nn.Linear(embed_dim, embed_dim) | |
| self.output_proj = nn.Linear(embed_dim, embed_dim) | |
| self.ms_deformable_attn_core = functools.partial(deformable_attention_core_func_v2, | |
| method=self.method, value_shape=value_shape) | |
| self._reset_parameters() | |
| if method == 'discrete': | |
| for p in self.sampling_offsets.parameters(): | |
| p.requires_grad = False | |
| def _reset_parameters(self): | |
| # sampling_offsets | |
| init.constant_(self.sampling_offsets.weight, 0) | |
| thetas = torch.arange(self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads) | |
| grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) | |
| grid_init = grid_init / grid_init.abs().max(-1, keepdim=True).values | |
| grid_init = grid_init.reshape(self.num_heads, 1, 2).tile([1, sum(self.num_points_list), 1]) | |
| scaling = torch.concat([torch.arange(1, n + 1) for n in self.num_points_list]).reshape(1, -1, 1) | |
| grid_init *= scaling | |
| self.sampling_offsets.bias.data[...] = grid_init.flatten() | |
| # attention_weights | |
| init.constant_(self.attention_weights.weight, 0) | |
| init.constant_(self.attention_weights.bias, 0) | |
| # proj | |
| init.xavier_uniform_(self.value_proj.weight) | |
| init.constant_(self.value_proj.bias, 0) | |
| init.xavier_uniform_(self.output_proj.weight) | |
| init.constant_(self.output_proj.bias, 0) | |
| def forward(self, | |
| query: torch.Tensor, | |
| reference_points: torch.Tensor, | |
| value: torch.Tensor, | |
| value_spatial_shapes: List[int], | |
| value_mask: torch.Tensor=None): | |
| """ | |
| Args: | |
| query (Tensor): [bs, query_length, C] | |
| reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0), | |
| bottom-right (1, 1), including padding area | |
| value (Tensor): [bs, value_length, C] | |
| value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] | |
| value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements | |
| Returns: | |
| output (Tensor): [bs, Length_{query}, C] | |
| """ | |
| bs, Len_q = query.shape[:2] | |
| Len_v = value.shape[1] | |
| value = self.value_proj(value) | |
| if value_mask is not None: | |
| value = value * value_mask.to(value.dtype).unsqueeze(-1) | |
| value = value.reshape(bs, Len_v, self.num_heads, self.head_dim) | |
| sampling_offsets: torch.Tensor = self.sampling_offsets(query) | |
| sampling_offsets = sampling_offsets.reshape(bs, Len_q, self.num_heads, sum(self.num_points_list), 2) | |
| attention_weights = self.attention_weights(query).reshape(bs, Len_q, self.num_heads, sum(self.num_points_list)) | |
| attention_weights = F.softmax(attention_weights, dim=-1).reshape(bs, Len_q, self.num_heads, sum(self.num_points_list)) | |
| if reference_points.shape[-1] == 2: | |
| offset_normalizer = torch.tensor(value_spatial_shapes) | |
| offset_normalizer = offset_normalizer.flip([1]).reshape(1, 1, 1, self.num_levels, 1, 2) | |
| sampling_locations = reference_points.reshape(bs, Len_q, 1, self.num_levels, 1, 2) + sampling_offsets / offset_normalizer | |
| elif reference_points.shape[-1] == 4: | |
| # reference_points [8, 480, None, 1, 4] | |
| # sampling_offsets [8, 480, 8, 12, 2] | |
| num_points_scale = self.num_points_scale.to(dtype=query.dtype).unsqueeze(-1) | |
| offset = sampling_offsets * num_points_scale * reference_points[:, :, None, :, 2:] * self.offset_scale | |
| sampling_locations = reference_points[:, :, None, :, :2] + offset | |
| else: | |
| raise ValueError( | |
| "Last dim of reference_points must be 2 or 4, but get {} instead.". | |
| format(reference_points.shape[-1])) | |
| output = self.ms_deformable_attn_core(value, value_spatial_shapes, sampling_locations, attention_weights, self.num_points_list) | |
| output = self.output_proj(output) | |
| return output | |
| class TransformerDecoderLayer(nn.Module): | |
| def __init__(self, | |
| d_model=256, | |
| n_head=8, | |
| dim_feedforward=1024, | |
| dropout=0., | |
| activation='relu', | |
| n_levels=4, | |
| n_points=4, | |
| cross_attn_method='default', | |
| value_shape='default', | |
| ): | |
| super(TransformerDecoderLayer, self).__init__() | |
| # self attention | |
| self.self_attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout, batch_first=True) | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.norm1 = nn.LayerNorm(d_model) | |
| # cross attention | |
| self.cross_attn = MSDeformableAttention(d_model, n_head, n_levels, n_points, method=cross_attn_method, value_shape=value_shape) | |
| self.dropout2 = nn.Dropout(dropout) | |
| self.norm2 = nn.LayerNorm(d_model) | |
| # ffn | |
| self.linear1 = nn.Linear(d_model, dim_feedforward) | |
| self.activation = get_activation(activation) | |
| self.dropout3 = nn.Dropout(dropout) | |
| self.linear2 = nn.Linear(dim_feedforward, d_model) | |
| self.dropout4 = nn.Dropout(dropout) | |
| self.norm3 = nn.LayerNorm(d_model) | |
| self._reset_parameters() | |
| def _reset_parameters(self): | |
| init.xavier_uniform_(self.linear1.weight) | |
| init.xavier_uniform_(self.linear2.weight) | |
| def with_pos_embed(self, tensor, pos): | |
| return tensor if pos is None else tensor + pos | |
| def forward_ffn(self, tgt): | |
| return self.linear2(self.dropout3(self.activation(self.linear1(tgt)))) | |
| def forward(self, | |
| target, | |
| reference_points, | |
| memory, | |
| memory_spatial_shapes, | |
| attn_mask=None, | |
| memory_mask=None, | |
| query_pos_embed=None): | |
| # self attention | |
| q = k = self.with_pos_embed(target, query_pos_embed) | |
| target2, _ = self.self_attn(q, k, value=target, attn_mask=attn_mask) | |
| target = target + self.dropout1(target2) | |
| target = self.norm1(target) | |
| # cross attention | |
| target2 = self.cross_attn(\ | |
| self.with_pos_embed(target, query_pos_embed), | |
| reference_points, | |
| memory, | |
| memory_spatial_shapes, | |
| memory_mask) | |
| target = target + self.dropout2(target2) | |
| target = self.norm2(target) | |
| # ffn | |
| target2 = self.forward_ffn(target) | |
| target = target + self.dropout4(target2) | |
| target = self.norm3(target) | |
| return target | |
| class TransformerDecoder(nn.Module): | |
| def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1): | |
| super(TransformerDecoder, self).__init__() | |
| self.layers = nn.ModuleList([copy.deepcopy(decoder_layer) for _ in range(num_layers)]) | |
| self.hidden_dim = hidden_dim | |
| self.num_layers = num_layers | |
| self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx | |
| def forward(self, | |
| target, | |
| ref_points_unact, | |
| memory, | |
| memory_spatial_shapes, | |
| bbox_head, | |
| score_head, | |
| query_pos_head, | |
| attn_mask=None, | |
| memory_mask=None): | |
| dec_out_bboxes = [] | |
| dec_out_logits = [] | |
| ref_points_detach = F.sigmoid(ref_points_unact) | |
| output = target | |
| for i, layer in enumerate(self.layers): | |
| ref_points_input = ref_points_detach.unsqueeze(2) | |
| query_pos_embed = query_pos_head(ref_points_detach) | |
| output = layer(output, ref_points_input, memory, memory_spatial_shapes, attn_mask, memory_mask, query_pos_embed) | |
| inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach)) | |
| if self.training: | |
| dec_out_logits.append(score_head[i](output)) | |
| if i == 0: | |
| dec_out_bboxes.append(inter_ref_bbox) | |
| else: | |
| dec_out_bboxes.append(F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points))) | |
| elif i == self.eval_idx: | |
| dec_out_logits.append(score_head[i](output)) | |
| dec_out_bboxes.append(inter_ref_bbox) | |
| break | |
| ref_points = inter_ref_bbox | |
| ref_points_detach = inter_ref_bbox.detach() | |
| return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits) | |
| class RTDETRTransformerv2(nn.Module): | |
| __share__ = ['num_classes', 'eval_spatial_size'] | |
| def __init__(self, | |
| num_classes=80, | |
| hidden_dim=256, | |
| num_queries=300, | |
| feat_channels=[512, 1024, 2048], | |
| feat_strides=[8, 16, 32], | |
| num_levels=3, | |
| num_points=4, | |
| nhead=8, | |
| num_layers=6, | |
| dim_feedforward=1024, | |
| dropout=0., | |
| activation="relu", | |
| num_denoising=100, | |
| label_noise_ratio=0.5, | |
| box_noise_scale=1.0, | |
| learn_query_content=False, | |
| eval_spatial_size=None, | |
| eval_idx=-1, | |
| eps=1e-2, | |
| aux_loss=True, | |
| cross_attn_method='default', | |
| query_select_method='default', | |
| value_shape='reshape', | |
| mlp_act='relu', | |
| query_pos_method='default', | |
| ): | |
| super().__init__() | |
| assert len(feat_channels) <= num_levels | |
| assert len(feat_strides) == len(feat_channels) | |
| for _ in range(num_levels - len(feat_strides)): | |
| feat_strides.append(feat_strides[-1] * 2) | |
| self.hidden_dim = hidden_dim | |
| self.nhead = nhead | |
| self.feat_strides = feat_strides | |
| self.num_levels = num_levels | |
| self.num_classes = num_classes | |
| self.num_queries = num_queries | |
| self.eps = eps | |
| self.num_layers = num_layers | |
| self.eval_spatial_size = eval_spatial_size | |
| self.aux_loss = aux_loss | |
| assert query_select_method in ('default', 'one2many', 'agnostic'), '' | |
| assert cross_attn_method in ('default', 'discrete'), '' | |
| self.cross_attn_method = cross_attn_method | |
| self.query_select_method = query_select_method | |
| # backbone feature projection | |
| self._build_input_proj_layer(feat_channels) | |
| # Transformer module | |
| decoder_layer = TransformerDecoderLayer(hidden_dim, nhead, dim_feedforward, dropout, \ | |
| activation, num_levels, num_points, cross_attn_method=cross_attn_method, value_shape=value_shape) | |
| self.decoder = TransformerDecoder(hidden_dim, decoder_layer, num_layers, eval_idx) | |
| # denoising | |
| self.num_denoising = num_denoising | |
| self.label_noise_ratio = label_noise_ratio | |
| self.box_noise_scale = box_noise_scale | |
| if num_denoising > 0: | |
| self.denoising_class_embed = nn.Embedding(num_classes+1, hidden_dim, padding_idx=num_classes) | |
| init.normal_(self.denoising_class_embed.weight[:-1]) | |
| # decoder embedding | |
| self.learn_query_content = learn_query_content | |
| if learn_query_content: | |
| self.tgt_embed = nn.Embedding(num_queries, hidden_dim) | |
| if query_pos_method == 'as_reg': | |
| self.query_pos_head = MLP(4, hidden_dim, hidden_dim, 3, act=mlp_act) | |
| print(" ### Query Position Embedding@{} ### ".format(query_pos_method)) | |
| else: | |
| self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, 2, act=mlp_act) | |
| # if num_select_queries != self.num_queries: | |
| # layer = TransformerEncoderLayer(hidden_dim, nhead, dim_feedforward, activation='gelu') | |
| # self.encoder = TransformerEncoder(layer, 1) | |
| self.enc_output = nn.Sequential(OrderedDict([ | |
| ('proj', nn.Linear(hidden_dim, hidden_dim)), | |
| ('norm', nn.LayerNorm(hidden_dim,)), | |
| ])) | |
| if query_select_method == 'agnostic': | |
| self.enc_score_head = nn.Linear(hidden_dim, 1) | |
| else: | |
| self.enc_score_head = nn.Linear(hidden_dim, num_classes) | |
| self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, 3, act=mlp_act) | |
| # decoder head | |
| self.dec_score_head = nn.ModuleList([ | |
| nn.Linear(hidden_dim, num_classes) for _ in range(num_layers) | |
| ]) | |
| self.dec_bbox_head = nn.ModuleList([ | |
| MLP(hidden_dim, hidden_dim, 4, 3, act=mlp_act) for _ in range(num_layers) | |
| ]) | |
| # init encoder output anchors and valid_mask | |
| if self.eval_spatial_size: | |
| anchors, valid_mask = self._generate_anchors() | |
| self.register_buffer('anchors', anchors) | |
| self.register_buffer('valid_mask', valid_mask) | |
| self._reset_parameters() | |
| def _reset_parameters(self): | |
| bias = bias_init_with_prob(0.01) | |
| init.constant_(self.enc_score_head.bias, bias) | |
| init.constant_(self.enc_bbox_head.layers[-1].weight, 0) | |
| init.constant_(self.enc_bbox_head.layers[-1].bias, 0) | |
| for _cls, _reg in zip(self.dec_score_head, self.dec_bbox_head): | |
| init.constant_(_cls.bias, bias) | |
| init.constant_(_reg.layers[-1].weight, 0) | |
| init.constant_(_reg.layers[-1].bias, 0) | |
| init.xavier_uniform_(self.enc_output[0].weight) | |
| if self.learn_query_content: | |
| init.xavier_uniform_(self.tgt_embed.weight) | |
| init.xavier_uniform_(self.query_pos_head.layers[0].weight) | |
| init.xavier_uniform_(self.query_pos_head.layers[1].weight) | |
| for m in self.input_proj: | |
| init.xavier_uniform_(m[0].weight) | |
| def _build_input_proj_layer(self, feat_channels): | |
| self.input_proj = nn.ModuleList() | |
| for in_channels in feat_channels: | |
| self.input_proj.append( | |
| nn.Sequential(OrderedDict([ | |
| ('conv', nn.Conv2d(in_channels, self.hidden_dim, 1, bias=False)), | |
| ('norm', nn.BatchNorm2d(self.hidden_dim,))]) | |
| ) | |
| ) | |
| in_channels = feat_channels[-1] | |
| for _ in range(self.num_levels - len(feat_channels)): | |
| self.input_proj.append( | |
| nn.Sequential(OrderedDict([ | |
| ('conv', nn.Conv2d(in_channels, self.hidden_dim, 3, 2, padding=1, bias=False)), | |
| ('norm', nn.BatchNorm2d(self.hidden_dim))]) | |
| ) | |
| ) | |
| in_channels = self.hidden_dim | |
| def _get_encoder_input(self, feats: List[torch.Tensor]): | |
| # get projection features | |
| proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)] | |
| if self.num_levels > len(proj_feats): | |
| len_srcs = len(proj_feats) | |
| for i in range(len_srcs, self.num_levels): | |
| if i == len_srcs: | |
| proj_feats.append(self.input_proj[i](feats[-1])) | |
| else: | |
| proj_feats.append(self.input_proj[i](proj_feats[-1])) | |
| # get encoder inputs | |
| feat_flatten = [] | |
| spatial_shapes = [] | |
| for i, feat in enumerate(proj_feats): | |
| _, _, h, w = feat.shape | |
| # [b, c, h, w] -> [b, h*w, c] | |
| feat_flatten.append(feat.flatten(2).permute(0, 2, 1)) | |
| # [num_levels, 2] | |
| spatial_shapes.append([h, w]) | |
| # [b, l, c] | |
| feat_flatten = torch.concat(feat_flatten, 1) | |
| return feat_flatten, spatial_shapes | |
| def _generate_anchors(self, | |
| spatial_shapes=None, | |
| grid_size=0.05, | |
| dtype=torch.float32, | |
| device='cpu'): | |
| if spatial_shapes is None: | |
| spatial_shapes = [] | |
| eval_h, eval_w = self.eval_spatial_size | |
| for s in self.feat_strides: | |
| spatial_shapes.append([int(eval_h / s), int(eval_w / s)]) | |
| anchors = [] | |
| for lvl, (h, w) in enumerate(spatial_shapes): | |
| grid_y, grid_x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij') | |
| grid_xy = torch.stack([grid_x, grid_y], dim=-1) | |
| grid_xy = (grid_xy.unsqueeze(0) + 0.5) / torch.tensor([w, h], dtype=dtype) | |
| wh = torch.ones_like(grid_xy) * grid_size * (2.0 ** lvl) | |
| lvl_anchors = torch.concat([grid_xy, wh], dim=-1).reshape(-1, h * w, 4) | |
| anchors.append(lvl_anchors) | |
| anchors = torch.concat(anchors, dim=1).to(device) | |
| valid_mask = ((anchors > self.eps) * (anchors < 1 - self.eps)).all(-1, keepdim=True) | |
| anchors = torch.log(anchors / (1 - anchors)) | |
| anchors = torch.where(valid_mask, anchors, torch.inf) | |
| return anchors, valid_mask | |
| def _get_decoder_input(self, | |
| memory: torch.Tensor, | |
| spatial_shapes, | |
| denoising_logits=None, | |
| denoising_bbox_unact=None): | |
| # prepare input for decoder | |
| if self.training or self.eval_spatial_size is None: | |
| anchors, valid_mask = self._generate_anchors(spatial_shapes, device=memory.device) | |
| else: | |
| anchors = self.anchors | |
| valid_mask = self.valid_mask | |
| # memory = torch.where(valid_mask, memory, 0) | |
| memory = valid_mask.to(memory.dtype) * memory | |
| output_memory :torch.Tensor = self.enc_output(memory) | |
| enc_outputs_logits :torch.Tensor = self.enc_score_head(output_memory) | |
| enc_outputs_coord_unact :torch.Tensor = self.enc_bbox_head(output_memory) + anchors | |
| enc_topk_bboxes_list, enc_topk_logits_list = [], [] | |
| enc_topk_memory, enc_topk_logits, enc_topk_bbox_unact = \ | |
| self._select_topk(output_memory, enc_outputs_logits, enc_outputs_coord_unact, self.num_queries) | |
| if self.training: | |
| enc_topk_bboxes = F.sigmoid(enc_topk_bbox_unact) | |
| enc_topk_bboxes_list.append(enc_topk_bboxes) | |
| enc_topk_logits_list.append(enc_topk_logits) | |
| # if self.num_select_queries != self.num_queries: | |
| # raise NotImplementedError('') | |
| if self.learn_query_content: | |
| content = self.tgt_embed.weight.unsqueeze(0).tile([memory.shape[0], 1, 1]) | |
| else: | |
| content = enc_topk_memory.detach() | |
| enc_topk_bbox_unact = enc_topk_bbox_unact.detach() | |
| if denoising_bbox_unact is not None: | |
| enc_topk_bbox_unact = torch.concat([denoising_bbox_unact, enc_topk_bbox_unact], dim=1) | |
| content = torch.concat([denoising_logits, content], dim=1) | |
| return content, enc_topk_bbox_unact, enc_topk_bboxes_list, enc_topk_logits_list | |
| def _select_topk(self, memory: torch.Tensor, outputs_logits: torch.Tensor, outputs_coords_unact: torch.Tensor, topk: int): | |
| if self.query_select_method == 'default': | |
| _, topk_ind = torch.topk(outputs_logits.max(-1).values, topk, dim=-1) | |
| elif self.query_select_method == 'one2many': | |
| _, topk_ind = torch.topk(outputs_logits.flatten(1), topk, dim=-1) | |
| topk_ind = topk_ind // self.num_classes | |
| elif self.query_select_method == 'agnostic': | |
| _, topk_ind = torch.topk(outputs_logits.squeeze(-1), topk, dim=-1) | |
| topk_ind: torch.Tensor | |
| topk_coords = outputs_coords_unact.gather(dim=1, \ | |
| index=topk_ind.unsqueeze(-1).repeat(1, 1, outputs_coords_unact.shape[-1])) | |
| topk_logits = outputs_logits.gather(dim=1, \ | |
| index=topk_ind.unsqueeze(-1).repeat(1, 1, outputs_logits.shape[-1])) | |
| topk_memory = memory.gather(dim=1, \ | |
| index=topk_ind.unsqueeze(-1).repeat(1, 1, memory.shape[-1])) | |
| return topk_memory, topk_logits, topk_coords | |
| def forward(self, feats, targets=None): | |
| # input projection and embedding | |
| memory, spatial_shapes = self._get_encoder_input(feats) | |
| # prepare denoising training | |
| if self.training and self.num_denoising > 0: | |
| denoising_logits, denoising_bbox_unact, attn_mask, dn_meta = \ | |
| get_contrastive_denoising_training_group(targets, \ | |
| self.num_classes, | |
| self.num_queries, | |
| self.denoising_class_embed, | |
| num_denoising=self.num_denoising, | |
| label_noise_ratio=self.label_noise_ratio, | |
| box_noise_scale=self.box_noise_scale, ) | |
| else: | |
| denoising_logits, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None | |
| init_ref_contents, init_ref_points_unact, enc_topk_bboxes_list, enc_topk_logits_list = \ | |
| self._get_decoder_input(memory, spatial_shapes, denoising_logits, denoising_bbox_unact) | |
| # decoder | |
| out_bboxes, out_logits = self.decoder( | |
| init_ref_contents, | |
| init_ref_points_unact, | |
| memory, | |
| spatial_shapes, | |
| self.dec_bbox_head, | |
| self.dec_score_head, | |
| self.query_pos_head, | |
| attn_mask=attn_mask) | |
| if self.training and dn_meta is not None: | |
| dn_out_bboxes, out_bboxes = torch.split(out_bboxes, dn_meta['dn_num_split'], dim=2) | |
| dn_out_logits, out_logits = torch.split(out_logits, dn_meta['dn_num_split'], dim=2) | |
| out = {'pred_logits': out_logits[-1], 'pred_boxes': out_bboxes[-1]} | |
| if self.training and self.aux_loss: | |
| out['aux_outputs'] = self._set_aux_loss(out_logits[:-1], out_bboxes[:-1]) | |
| out['enc_aux_outputs'] = self._set_aux_loss(enc_topk_logits_list, enc_topk_bboxes_list) | |
| out['enc_meta'] = {'class_agnostic': self.query_select_method == 'agnostic'} | |
| if dn_meta is not None: | |
| out['dn_outputs'] = self._set_aux_loss(dn_out_logits, dn_out_bboxes) | |
| out['dn_meta'] = dn_meta | |
| return out | |
| def _set_aux_loss(self, outputs_class, outputs_coord): | |
| # this is a workaround to make torchscript happy, as torchscript | |
| # doesn't support dictionary with non-homogeneous values, such | |
| # as a dict having both a Tensor and a list. | |
| return [{'pred_logits': a, 'pred_boxes': b} | |
| for a, b in zip(outputs_class, outputs_coord)] |