gpu_symbol / engine /deim /rtdetrv2_decoder.py
himipo's picture
first
11aa70b
"""Copyright(c) 2023 lyuwenyu. All Rights Reserved.
Modifications Copyright (c) 2024 The DEIM Authors. All Rights Reserved.
"""
import math
import copy
import functools
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
from typing import List
from .denoising import get_contrastive_denoising_training_group
from .utils import bias_init_with_prob, get_activation, inverse_sigmoid
from .utils import deformable_attention_core_func_v2
from ..core import register
__all__ = ['RTDETRTransformerv2']
class MLP(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, act='relu'):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
self.act = get_activation(act)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
class MSDeformableAttention(nn.Module):
def __init__(
self,
embed_dim=256,
num_heads=8,
num_levels=4,
num_points=4,
method='default',
offset_scale=0.5,
value_shape='default',
):
"""Multi-Scale Deformable Attention
"""
super(MSDeformableAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.num_levels = num_levels
self.offset_scale = offset_scale
if isinstance(num_points, list):
assert len(num_points) == num_levels, ''
num_points_list = num_points
else:
num_points_list = [num_points for _ in range(num_levels)]
self.num_points_list = num_points_list
num_points_scale = [1/n for n in num_points_list for _ in range(n)]
self.register_buffer('num_points_scale', torch.tensor(num_points_scale, dtype=torch.float32))
self.total_points = num_heads * sum(num_points_list)
self.method = method
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.sampling_offsets = nn.Linear(embed_dim, self.total_points * 2)
self.attention_weights = nn.Linear(embed_dim, self.total_points)
self.value_proj = nn.Linear(embed_dim, embed_dim)
self.output_proj = nn.Linear(embed_dim, embed_dim)
self.ms_deformable_attn_core = functools.partial(deformable_attention_core_func_v2,
method=self.method, value_shape=value_shape)
self._reset_parameters()
if method == 'discrete':
for p in self.sampling_offsets.parameters():
p.requires_grad = False
def _reset_parameters(self):
# sampling_offsets
init.constant_(self.sampling_offsets.weight, 0)
thetas = torch.arange(self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads)
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
grid_init = grid_init / grid_init.abs().max(-1, keepdim=True).values
grid_init = grid_init.reshape(self.num_heads, 1, 2).tile([1, sum(self.num_points_list), 1])
scaling = torch.concat([torch.arange(1, n + 1) for n in self.num_points_list]).reshape(1, -1, 1)
grid_init *= scaling
self.sampling_offsets.bias.data[...] = grid_init.flatten()
# attention_weights
init.constant_(self.attention_weights.weight, 0)
init.constant_(self.attention_weights.bias, 0)
# proj
init.xavier_uniform_(self.value_proj.weight)
init.constant_(self.value_proj.bias, 0)
init.xavier_uniform_(self.output_proj.weight)
init.constant_(self.output_proj.bias, 0)
def forward(self,
query: torch.Tensor,
reference_points: torch.Tensor,
value: torch.Tensor,
value_spatial_shapes: List[int],
value_mask: torch.Tensor=None):
"""
Args:
query (Tensor): [bs, query_length, C]
reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
bottom-right (1, 1), including padding area
value (Tensor): [bs, value_length, C]
value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
Returns:
output (Tensor): [bs, Length_{query}, C]
"""
bs, Len_q = query.shape[:2]
Len_v = value.shape[1]
value = self.value_proj(value)
if value_mask is not None:
value = value * value_mask.to(value.dtype).unsqueeze(-1)
value = value.reshape(bs, Len_v, self.num_heads, self.head_dim)
sampling_offsets: torch.Tensor = self.sampling_offsets(query)
sampling_offsets = sampling_offsets.reshape(bs, Len_q, self.num_heads, sum(self.num_points_list), 2)
attention_weights = self.attention_weights(query).reshape(bs, Len_q, self.num_heads, sum(self.num_points_list))
attention_weights = F.softmax(attention_weights, dim=-1).reshape(bs, Len_q, self.num_heads, sum(self.num_points_list))
if reference_points.shape[-1] == 2:
offset_normalizer = torch.tensor(value_spatial_shapes)
offset_normalizer = offset_normalizer.flip([1]).reshape(1, 1, 1, self.num_levels, 1, 2)
sampling_locations = reference_points.reshape(bs, Len_q, 1, self.num_levels, 1, 2) + sampling_offsets / offset_normalizer
elif reference_points.shape[-1] == 4:
# reference_points [8, 480, None, 1, 4]
# sampling_offsets [8, 480, 8, 12, 2]
num_points_scale = self.num_points_scale.to(dtype=query.dtype).unsqueeze(-1)
offset = sampling_offsets * num_points_scale * reference_points[:, :, None, :, 2:] * self.offset_scale
sampling_locations = reference_points[:, :, None, :, :2] + offset
else:
raise ValueError(
"Last dim of reference_points must be 2 or 4, but get {} instead.".
format(reference_points.shape[-1]))
output = self.ms_deformable_attn_core(value, value_spatial_shapes, sampling_locations, attention_weights, self.num_points_list)
output = self.output_proj(output)
return output
class TransformerDecoderLayer(nn.Module):
def __init__(self,
d_model=256,
n_head=8,
dim_feedforward=1024,
dropout=0.,
activation='relu',
n_levels=4,
n_points=4,
cross_attn_method='default',
value_shape='default',
):
super(TransformerDecoderLayer, self).__init__()
# self attention
self.self_attn = nn.MultiheadAttention(d_model, n_head, dropout=dropout, batch_first=True)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# cross attention
self.cross_attn = MSDeformableAttention(d_model, n_head, n_levels, n_points, method=cross_attn_method, value_shape=value_shape)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.activation = get_activation(activation)
self.dropout3 = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout4 = nn.Dropout(dropout)
self.norm3 = nn.LayerNorm(d_model)
self._reset_parameters()
def _reset_parameters(self):
init.xavier_uniform_(self.linear1.weight)
init.xavier_uniform_(self.linear2.weight)
def with_pos_embed(self, tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
return self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
def forward(self,
target,
reference_points,
memory,
memory_spatial_shapes,
attn_mask=None,
memory_mask=None,
query_pos_embed=None):
# self attention
q = k = self.with_pos_embed(target, query_pos_embed)
target2, _ = self.self_attn(q, k, value=target, attn_mask=attn_mask)
target = target + self.dropout1(target2)
target = self.norm1(target)
# cross attention
target2 = self.cross_attn(\
self.with_pos_embed(target, query_pos_embed),
reference_points,
memory,
memory_spatial_shapes,
memory_mask)
target = target + self.dropout2(target2)
target = self.norm2(target)
# ffn
target2 = self.forward_ffn(target)
target = target + self.dropout4(target2)
target = self.norm3(target)
return target
class TransformerDecoder(nn.Module):
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
super(TransformerDecoder, self).__init__()
self.layers = nn.ModuleList([copy.deepcopy(decoder_layer) for _ in range(num_layers)])
self.hidden_dim = hidden_dim
self.num_layers = num_layers
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
def forward(self,
target,
ref_points_unact,
memory,
memory_spatial_shapes,
bbox_head,
score_head,
query_pos_head,
attn_mask=None,
memory_mask=None):
dec_out_bboxes = []
dec_out_logits = []
ref_points_detach = F.sigmoid(ref_points_unact)
output = target
for i, layer in enumerate(self.layers):
ref_points_input = ref_points_detach.unsqueeze(2)
query_pos_embed = query_pos_head(ref_points_detach)
output = layer(output, ref_points_input, memory, memory_spatial_shapes, attn_mask, memory_mask, query_pos_embed)
inter_ref_bbox = F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach))
if self.training:
dec_out_logits.append(score_head[i](output))
if i == 0:
dec_out_bboxes.append(inter_ref_bbox)
else:
dec_out_bboxes.append(F.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points)))
elif i == self.eval_idx:
dec_out_logits.append(score_head[i](output))
dec_out_bboxes.append(inter_ref_bbox)
break
ref_points = inter_ref_bbox
ref_points_detach = inter_ref_bbox.detach()
return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)
@register()
class RTDETRTransformerv2(nn.Module):
__share__ = ['num_classes', 'eval_spatial_size']
def __init__(self,
num_classes=80,
hidden_dim=256,
num_queries=300,
feat_channels=[512, 1024, 2048],
feat_strides=[8, 16, 32],
num_levels=3,
num_points=4,
nhead=8,
num_layers=6,
dim_feedforward=1024,
dropout=0.,
activation="relu",
num_denoising=100,
label_noise_ratio=0.5,
box_noise_scale=1.0,
learn_query_content=False,
eval_spatial_size=None,
eval_idx=-1,
eps=1e-2,
aux_loss=True,
cross_attn_method='default',
query_select_method='default',
value_shape='reshape',
mlp_act='relu',
query_pos_method='default',
):
super().__init__()
assert len(feat_channels) <= num_levels
assert len(feat_strides) == len(feat_channels)
for _ in range(num_levels - len(feat_strides)):
feat_strides.append(feat_strides[-1] * 2)
self.hidden_dim = hidden_dim
self.nhead = nhead
self.feat_strides = feat_strides
self.num_levels = num_levels
self.num_classes = num_classes
self.num_queries = num_queries
self.eps = eps
self.num_layers = num_layers
self.eval_spatial_size = eval_spatial_size
self.aux_loss = aux_loss
assert query_select_method in ('default', 'one2many', 'agnostic'), ''
assert cross_attn_method in ('default', 'discrete'), ''
self.cross_attn_method = cross_attn_method
self.query_select_method = query_select_method
# backbone feature projection
self._build_input_proj_layer(feat_channels)
# Transformer module
decoder_layer = TransformerDecoderLayer(hidden_dim, nhead, dim_feedforward, dropout, \
activation, num_levels, num_points, cross_attn_method=cross_attn_method, value_shape=value_shape)
self.decoder = TransformerDecoder(hidden_dim, decoder_layer, num_layers, eval_idx)
# denoising
self.num_denoising = num_denoising
self.label_noise_ratio = label_noise_ratio
self.box_noise_scale = box_noise_scale
if num_denoising > 0:
self.denoising_class_embed = nn.Embedding(num_classes+1, hidden_dim, padding_idx=num_classes)
init.normal_(self.denoising_class_embed.weight[:-1])
# decoder embedding
self.learn_query_content = learn_query_content
if learn_query_content:
self.tgt_embed = nn.Embedding(num_queries, hidden_dim)
if query_pos_method == 'as_reg':
self.query_pos_head = MLP(4, hidden_dim, hidden_dim, 3, act=mlp_act)
print(" ### Query Position Embedding@{} ### ".format(query_pos_method))
else:
self.query_pos_head = MLP(4, 2 * hidden_dim, hidden_dim, 2, act=mlp_act)
# if num_select_queries != self.num_queries:
# layer = TransformerEncoderLayer(hidden_dim, nhead, dim_feedforward, activation='gelu')
# self.encoder = TransformerEncoder(layer, 1)
self.enc_output = nn.Sequential(OrderedDict([
('proj', nn.Linear(hidden_dim, hidden_dim)),
('norm', nn.LayerNorm(hidden_dim,)),
]))
if query_select_method == 'agnostic':
self.enc_score_head = nn.Linear(hidden_dim, 1)
else:
self.enc_score_head = nn.Linear(hidden_dim, num_classes)
self.enc_bbox_head = MLP(hidden_dim, hidden_dim, 4, 3, act=mlp_act)
# decoder head
self.dec_score_head = nn.ModuleList([
nn.Linear(hidden_dim, num_classes) for _ in range(num_layers)
])
self.dec_bbox_head = nn.ModuleList([
MLP(hidden_dim, hidden_dim, 4, 3, act=mlp_act) for _ in range(num_layers)
])
# init encoder output anchors and valid_mask
if self.eval_spatial_size:
anchors, valid_mask = self._generate_anchors()
self.register_buffer('anchors', anchors)
self.register_buffer('valid_mask', valid_mask)
self._reset_parameters()
def _reset_parameters(self):
bias = bias_init_with_prob(0.01)
init.constant_(self.enc_score_head.bias, bias)
init.constant_(self.enc_bbox_head.layers[-1].weight, 0)
init.constant_(self.enc_bbox_head.layers[-1].bias, 0)
for _cls, _reg in zip(self.dec_score_head, self.dec_bbox_head):
init.constant_(_cls.bias, bias)
init.constant_(_reg.layers[-1].weight, 0)
init.constant_(_reg.layers[-1].bias, 0)
init.xavier_uniform_(self.enc_output[0].weight)
if self.learn_query_content:
init.xavier_uniform_(self.tgt_embed.weight)
init.xavier_uniform_(self.query_pos_head.layers[0].weight)
init.xavier_uniform_(self.query_pos_head.layers[1].weight)
for m in self.input_proj:
init.xavier_uniform_(m[0].weight)
def _build_input_proj_layer(self, feat_channels):
self.input_proj = nn.ModuleList()
for in_channels in feat_channels:
self.input_proj.append(
nn.Sequential(OrderedDict([
('conv', nn.Conv2d(in_channels, self.hidden_dim, 1, bias=False)),
('norm', nn.BatchNorm2d(self.hidden_dim,))])
)
)
in_channels = feat_channels[-1]
for _ in range(self.num_levels - len(feat_channels)):
self.input_proj.append(
nn.Sequential(OrderedDict([
('conv', nn.Conv2d(in_channels, self.hidden_dim, 3, 2, padding=1, bias=False)),
('norm', nn.BatchNorm2d(self.hidden_dim))])
)
)
in_channels = self.hidden_dim
def _get_encoder_input(self, feats: List[torch.Tensor]):
# get projection features
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
if self.num_levels > len(proj_feats):
len_srcs = len(proj_feats)
for i in range(len_srcs, self.num_levels):
if i == len_srcs:
proj_feats.append(self.input_proj[i](feats[-1]))
else:
proj_feats.append(self.input_proj[i](proj_feats[-1]))
# get encoder inputs
feat_flatten = []
spatial_shapes = []
for i, feat in enumerate(proj_feats):
_, _, h, w = feat.shape
# [b, c, h, w] -> [b, h*w, c]
feat_flatten.append(feat.flatten(2).permute(0, 2, 1))
# [num_levels, 2]
spatial_shapes.append([h, w])
# [b, l, c]
feat_flatten = torch.concat(feat_flatten, 1)
return feat_flatten, spatial_shapes
def _generate_anchors(self,
spatial_shapes=None,
grid_size=0.05,
dtype=torch.float32,
device='cpu'):
if spatial_shapes is None:
spatial_shapes = []
eval_h, eval_w = self.eval_spatial_size
for s in self.feat_strides:
spatial_shapes.append([int(eval_h / s), int(eval_w / s)])
anchors = []
for lvl, (h, w) in enumerate(spatial_shapes):
grid_y, grid_x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij')
grid_xy = torch.stack([grid_x, grid_y], dim=-1)
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / torch.tensor([w, h], dtype=dtype)
wh = torch.ones_like(grid_xy) * grid_size * (2.0 ** lvl)
lvl_anchors = torch.concat([grid_xy, wh], dim=-1).reshape(-1, h * w, 4)
anchors.append(lvl_anchors)
anchors = torch.concat(anchors, dim=1).to(device)
valid_mask = ((anchors > self.eps) * (anchors < 1 - self.eps)).all(-1, keepdim=True)
anchors = torch.log(anchors / (1 - anchors))
anchors = torch.where(valid_mask, anchors, torch.inf)
return anchors, valid_mask
def _get_decoder_input(self,
memory: torch.Tensor,
spatial_shapes,
denoising_logits=None,
denoising_bbox_unact=None):
# prepare input for decoder
if self.training or self.eval_spatial_size is None:
anchors, valid_mask = self._generate_anchors(spatial_shapes, device=memory.device)
else:
anchors = self.anchors
valid_mask = self.valid_mask
# memory = torch.where(valid_mask, memory, 0)
memory = valid_mask.to(memory.dtype) * memory
output_memory :torch.Tensor = self.enc_output(memory)
enc_outputs_logits :torch.Tensor = self.enc_score_head(output_memory)
enc_outputs_coord_unact :torch.Tensor = self.enc_bbox_head(output_memory) + anchors
enc_topk_bboxes_list, enc_topk_logits_list = [], []
enc_topk_memory, enc_topk_logits, enc_topk_bbox_unact = \
self._select_topk(output_memory, enc_outputs_logits, enc_outputs_coord_unact, self.num_queries)
if self.training:
enc_topk_bboxes = F.sigmoid(enc_topk_bbox_unact)
enc_topk_bboxes_list.append(enc_topk_bboxes)
enc_topk_logits_list.append(enc_topk_logits)
# if self.num_select_queries != self.num_queries:
# raise NotImplementedError('')
if self.learn_query_content:
content = self.tgt_embed.weight.unsqueeze(0).tile([memory.shape[0], 1, 1])
else:
content = enc_topk_memory.detach()
enc_topk_bbox_unact = enc_topk_bbox_unact.detach()
if denoising_bbox_unact is not None:
enc_topk_bbox_unact = torch.concat([denoising_bbox_unact, enc_topk_bbox_unact], dim=1)
content = torch.concat([denoising_logits, content], dim=1)
return content, enc_topk_bbox_unact, enc_topk_bboxes_list, enc_topk_logits_list
def _select_topk(self, memory: torch.Tensor, outputs_logits: torch.Tensor, outputs_coords_unact: torch.Tensor, topk: int):
if self.query_select_method == 'default':
_, topk_ind = torch.topk(outputs_logits.max(-1).values, topk, dim=-1)
elif self.query_select_method == 'one2many':
_, topk_ind = torch.topk(outputs_logits.flatten(1), topk, dim=-1)
topk_ind = topk_ind // self.num_classes
elif self.query_select_method == 'agnostic':
_, topk_ind = torch.topk(outputs_logits.squeeze(-1), topk, dim=-1)
topk_ind: torch.Tensor
topk_coords = outputs_coords_unact.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, outputs_coords_unact.shape[-1]))
topk_logits = outputs_logits.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, outputs_logits.shape[-1]))
topk_memory = memory.gather(dim=1, \
index=topk_ind.unsqueeze(-1).repeat(1, 1, memory.shape[-1]))
return topk_memory, topk_logits, topk_coords
def forward(self, feats, targets=None):
# input projection and embedding
memory, spatial_shapes = self._get_encoder_input(feats)
# prepare denoising training
if self.training and self.num_denoising > 0:
denoising_logits, denoising_bbox_unact, attn_mask, dn_meta = \
get_contrastive_denoising_training_group(targets, \
self.num_classes,
self.num_queries,
self.denoising_class_embed,
num_denoising=self.num_denoising,
label_noise_ratio=self.label_noise_ratio,
box_noise_scale=self.box_noise_scale, )
else:
denoising_logits, denoising_bbox_unact, attn_mask, dn_meta = None, None, None, None
init_ref_contents, init_ref_points_unact, enc_topk_bboxes_list, enc_topk_logits_list = \
self._get_decoder_input(memory, spatial_shapes, denoising_logits, denoising_bbox_unact)
# decoder
out_bboxes, out_logits = self.decoder(
init_ref_contents,
init_ref_points_unact,
memory,
spatial_shapes,
self.dec_bbox_head,
self.dec_score_head,
self.query_pos_head,
attn_mask=attn_mask)
if self.training and dn_meta is not None:
dn_out_bboxes, out_bboxes = torch.split(out_bboxes, dn_meta['dn_num_split'], dim=2)
dn_out_logits, out_logits = torch.split(out_logits, dn_meta['dn_num_split'], dim=2)
out = {'pred_logits': out_logits[-1], 'pred_boxes': out_bboxes[-1]}
if self.training and self.aux_loss:
out['aux_outputs'] = self._set_aux_loss(out_logits[:-1], out_bboxes[:-1])
out['enc_aux_outputs'] = self._set_aux_loss(enc_topk_logits_list, enc_topk_bboxes_list)
out['enc_meta'] = {'class_agnostic': self.query_select_method == 'agnostic'}
if dn_meta is not None:
out['dn_outputs'] = self._set_aux_loss(dn_out_logits, dn_out_bboxes)
out['dn_meta'] = dn_meta
return out
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{'pred_logits': a, 'pred_boxes': b}
for a, b in zip(outputs_class, outputs_coord)]