ImageExplain / app.py
hillman2000hk's picture
Update app.py
6191d19
raw
history blame
1.67 kB
import os
import requests
import streamlit as st
from dotenv import find_dotenv, load_dotenv
from transformers import pipeline
from langchain import PromptTemplate, LLMChain
from langchain.llms import GooglePalm
load_dotenv(find_dotenv())
#llm = GooglePalm(temperature=0.9, google_api_key=os.getenv("GOOGLE_API_KEY"))
# Iamge to Text
def image_to_text(url):
#load a transformer
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
text = image_to_text(url)[0]['generated_text']
print (text)
return text
# llm
#
# text to speech
def text_to_speech(message):
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_TOKEN')}"}
payload = {"inputs": message}
response = requests.post(API_URL, headers=headers, json=payload)
print(response.content)
with open('audio.mp3', 'wb') as audio_file:
audio_file.write(response.content)
def main():
st.set_page_config(page_title="Image to Story", page_icon="📚", layout="wide")
st.title("Image to Story")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg","png","jpeg"])
if uploaded_file is not None:
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption='Uploaded Image.', use_column_width=True)
scenario = image_to_text(uploaded_file.name)
with st.expander("scenerio"):
st.write(scenario)
if __name__ == '__main__':
main()