audioEditing / models.py
hilamanor's picture
initial commit
e73da9c
raw
history blame
30.1 kB
import torch
from diffusers import DDIMScheduler
from diffusers import AudioLDM2Pipeline
from transformers import RobertaTokenizer, RobertaTokenizerFast
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput
from typing import Any, Dict, List, Optional, Tuple, Union
class PipelineWrapper(torch.nn.Module):
def __init__(self, model_id, device, double_precision=False, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.model_id = model_id
self.device = device
self.double_precision = double_precision
def get_sigma(self, timestep) -> float:
sqrt_recipm1_alphas_cumprod = torch.sqrt(1.0 / self.model.scheduler.alphas_cumprod - 1)
return sqrt_recipm1_alphas_cumprod[timestep]
def load_scheduler(self):
pass
def get_fn_STFT(self):
pass
def vae_encode(self, x: torch.Tensor):
pass
def vae_decode(self, x: torch.Tensor):
pass
def decode_to_mel(self, x: torch.Tensor):
pass
def encode_text(self, prompts: List[str]) -> Tuple:
pass
def get_variance(self, timestep, prev_timestep):
pass
def get_alpha_prod_t_prev(self, prev_timestep):
pass
def unet_forward(self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
replace_h_space: Optional[torch.Tensor] = None,
replace_skip_conns: Optional[Dict[int, torch.Tensor]] = None,
return_dict: bool = True,
zero_out_resconns: Optional[Union[int, List]] = None) -> Tuple:
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.model.unet.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
# logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None:
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 0. center input if necessary
if self.model.unet.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.model.unet.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.model.unet.time_embedding(t_emb, timestep_cond)
if self.model.unet.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.model.unet.config.class_embed_type == "timestep":
class_labels = self.model.unet.time_proj(class_labels)
# `Timesteps` does not contain any weights and will always return f32 tensors
# there might be better ways to encapsulate this.
class_labels = class_labels.to(dtype=sample.dtype)
class_emb = self.model.unet.class_embedding(class_labels).to(dtype=sample.dtype)
if self.model.unet.config.class_embeddings_concat:
emb = torch.cat([emb, class_emb], dim=-1)
else:
emb = emb + class_emb
if self.model.unet.config.addition_embed_type == "text":
aug_emb = self.model.unet.add_embedding(encoder_hidden_states)
emb = emb + aug_emb
elif self.model.unet.config.addition_embed_type == "text_image":
# Kadinsky 2.1 - style
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.model.unet.__class__} has the config param `addition_embed_type` set to 'text_image' "
f"which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
)
image_embs = added_cond_kwargs.get("image_embeds")
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
aug_emb = self.model.unet.add_embedding(text_embs, image_embs)
emb = emb + aug_emb
if self.model.unet.time_embed_act is not None:
emb = self.model.unet.time_embed_act(emb)
if self.model.unet.encoder_hid_proj is not None and self.model.unet.config.encoder_hid_dim_type == "text_proj":
encoder_hidden_states = self.model.unet.encoder_hid_proj(encoder_hidden_states)
elif self.model.unet.encoder_hid_proj is not None and \
self.model.unet.config.encoder_hid_dim_type == "text_image_proj":
# Kadinsky 2.1 - style
if "image_embeds" not in added_cond_kwargs:
raise ValueError(
f"{self.model.unet.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' "
f"which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
)
image_embeds = added_cond_kwargs.get("image_embeds")
encoder_hidden_states = self.model.unet.encoder_hid_proj(encoder_hidden_states, image_embeds)
# 2. pre-process
sample = self.model.unet.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.model.unet.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(
down_block_res_samples, down_block_additional_residuals
):
down_block_res_sample = down_block_res_sample + down_block_additional_residual
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# 4. mid
if self.model.unet.mid_block is not None:
sample = self.model.unet.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
)
# print(sample.shape)
if replace_h_space is None:
h_space = sample.clone()
else:
h_space = replace_h_space
sample = replace_h_space.clone()
if mid_block_additional_residual is not None:
sample = sample + mid_block_additional_residual
extracted_res_conns = {}
# 5. up
for i, upsample_block in enumerate(self.model.unet.up_blocks):
is_final_block = i == len(self.model.unet.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if replace_skip_conns is not None and replace_skip_conns.get(i):
res_samples = replace_skip_conns.get(i)
if zero_out_resconns is not None:
if (type(zero_out_resconns) is int and i >= (zero_out_resconns - 1)) or \
type(zero_out_resconns) is list and i in zero_out_resconns:
res_samples = [torch.zeros_like(x) for x in res_samples]
# down_block_res_samples = [torch.zeros_like(x) for x in down_block_res_samples]
extracted_res_conns[i] = res_samples
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
if self.model.unet.conv_norm_out:
sample = self.model.unet.conv_norm_out(sample)
sample = self.model.unet.conv_act(sample)
sample = self.model.unet.conv_out(sample)
if not return_dict:
return (sample,)
return UNet2DConditionOutput(sample=sample), h_space, extracted_res_conns
class AudioLDM2Wrapper(PipelineWrapper):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
if self.double_precision:
self.model = AudioLDM2Pipeline.from_pretrained(self.model_id, torch_dtype=torch.float64).to(self.device)
else:
try:
self.model = AudioLDM2Pipeline.from_pretrained(self.model_id, local_files_only=True).to(self.device)
except FileNotFoundError:
self.model = AudioLDM2Pipeline.from_pretrained(self.model_id, local_files_only=False).to(self.device)
def load_scheduler(self):
# self.model.scheduler = DDIMScheduler.from_config(self.model_id, subfolder="scheduler")
self.model.scheduler = DDIMScheduler.from_pretrained(self.model_id, subfolder="scheduler")
def get_fn_STFT(self):
from audioldm.audio import TacotronSTFT
return TacotronSTFT(
filter_length=1024,
hop_length=160,
win_length=1024,
n_mel_channels=64,
sampling_rate=16000,
mel_fmin=0,
mel_fmax=8000,
)
def vae_encode(self, x):
# self.model.vae.disable_tiling()
if x.shape[2] % 4:
x = torch.nn.functional.pad(x, (0, 0, 4 - (x.shape[2] % 4), 0))
return (self.model.vae.encode(x).latent_dist.mode() * self.model.vae.config.scaling_factor).float()
# return (self.encode_no_tiling(x).latent_dist.mode() * self.model.vae.config.scaling_factor).float()
def vae_decode(self, x):
return self.model.vae.decode(1 / self.model.vae.config.scaling_factor * x).sample
def decode_to_mel(self, x):
if self.double_precision:
tmp = self.model.mel_spectrogram_to_waveform(x[:, 0].detach().double()).detach()
tmp = self.model.mel_spectrogram_to_waveform(x[:, 0].detach().float()).detach()
if len(tmp.shape) == 1:
tmp = tmp.unsqueeze(0)
return tmp
def encode_text(self, prompts: List[str]):
tokenizers = [self.model.tokenizer, self.model.tokenizer_2]
text_encoders = [self.model.text_encoder, self.model.text_encoder_2]
prompt_embeds_list = []
attention_mask_list = []
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_inputs = tokenizer(
prompts,
padding="max_length" if isinstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast)) else True,
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
attention_mask = text_inputs.attention_mask
untruncated_ids = tokenizer(prompts, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] \
and not torch.equal(text_input_ids, untruncated_ids):
removed_text = tokenizer.batch_decode(
untruncated_ids[:, tokenizer.model_max_length - 1: -1])
print(f"The following part of your input was truncated because {text_encoder.config.model_type} can "
f"only handle sequences up to {tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids.to(self.device)
attention_mask = attention_mask.to(self.device)
with torch.no_grad():
if text_encoder.config.model_type == "clap":
prompt_embeds = text_encoder.get_text_features(
text_input_ids,
attention_mask=attention_mask,
)
# append the seq-len dim: (bs, hidden_size) -> (bs, seq_len, hidden_size)
prompt_embeds = prompt_embeds[:, None, :]
# make sure that we attend to this single hidden-state
attention_mask = attention_mask.new_ones((len(prompts), 1))
else:
prompt_embeds = text_encoder(
text_input_ids,
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds_list.append(prompt_embeds)
attention_mask_list.append(attention_mask)
# print(f'prompt[0].shape: {prompt_embeds_list[0].shape}')
# print(f'prompt[1].shape: {prompt_embeds_list[1].shape}')
# print(f'attn[0].shape: {attention_mask_list[0].shape}')
# print(f'attn[1].shape: {attention_mask_list[1].shape}')
projection_output = self.model.projection_model(
hidden_states=prompt_embeds_list[0],
hidden_states_1=prompt_embeds_list[1],
attention_mask=attention_mask_list[0],
attention_mask_1=attention_mask_list[1],
)
projected_prompt_embeds = projection_output.hidden_states
projected_attention_mask = projection_output.attention_mask
generated_prompt_embeds = self.model.generate_language_model(
projected_prompt_embeds,
attention_mask=projected_attention_mask,
max_new_tokens=None,
)
prompt_embeds = prompt_embeds.to(dtype=self.model.text_encoder_2.dtype, device=self.device)
attention_mask = (
attention_mask.to(device=self.device)
if attention_mask is not None
else torch.ones(prompt_embeds.shape[:2], dtype=torch.long, device=self.device)
)
generated_prompt_embeds = generated_prompt_embeds.to(dtype=self.model.language_model.dtype, device=self.device)
return generated_prompt_embeds, prompt_embeds, attention_mask
def get_variance(self, timestep, prev_timestep):
alpha_prod_t = self.model.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.get_alpha_prod_t_prev(prev_timestep)
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance
def get_alpha_prod_t_prev(self, prev_timestep):
return self.model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 \
else self.model.scheduler.final_alpha_cumprod
def unet_forward(self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
timestep_cond: Optional[torch.Tensor] = None,
class_labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
replace_h_space: Optional[torch.Tensor] = None,
replace_skip_conns: Optional[Dict[int, torch.Tensor]] = None,
zero_out_resconns: Optional[Union[int, List]] = None) -> Tuple:
# Translation
encoder_hidden_states_1 = class_labels
class_labels = None
encoder_attention_mask_1 = encoder_attention_mask
encoder_attention_mask = None
# return self.model.unet(sample, timestep,
# encoder_hidden_states=generated_prompt_embeds,
# encoder_hidden_states_1=encoder_hidden_states_1,
# encoder_attention_mask_1=encoder_attention_mask_1,
# ), None, None
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2 ** self.model.unet.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
# print("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None:
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
if encoder_attention_mask_1 is not None:
encoder_attention_mask_1 = (1 - encoder_attention_mask_1.to(sample.dtype)) * -10000.0
encoder_attention_mask_1 = encoder_attention_mask_1.unsqueeze(1)
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.model.unet.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.model.unet.time_embedding(t_emb, timestep_cond)
aug_emb = None
if self.model.unet.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.model.unet.config.class_embed_type == "timestep":
class_labels = self.model.unet.time_proj(class_labels)
# `Timesteps` does not contain any weights and will always return f32 tensors
# there might be better ways to encapsulate this.
class_labels = class_labels.to(dtype=sample.dtype)
class_emb = self.model.unet.class_embedding(class_labels).to(dtype=sample.dtype)
if self.model.unet.config.class_embeddings_concat:
emb = torch.cat([emb, class_emb], dim=-1)
else:
emb = emb + class_emb
emb = emb + aug_emb if aug_emb is not None else emb
if self.model.unet.time_embed_act is not None:
emb = self.model.unet.time_embed_act(emb)
# 2. pre-process
sample = self.model.unet.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.model.unet.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states_1=encoder_hidden_states_1,
encoder_attention_mask_1=encoder_attention_mask_1,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
if self.model.unet.mid_block is not None:
sample = self.model.unet.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states_1=encoder_hidden_states_1,
encoder_attention_mask_1=encoder_attention_mask_1,
)
if replace_h_space is None:
h_space = sample.clone()
else:
h_space = replace_h_space
sample = replace_h_space.clone()
if mid_block_additional_residual is not None:
sample = sample + mid_block_additional_residual
extracted_res_conns = {}
# 5. up
for i, upsample_block in enumerate(self.model.unet.up_blocks):
is_final_block = i == len(self.model.unet.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
if replace_skip_conns is not None and replace_skip_conns.get(i):
res_samples = replace_skip_conns.get(i)
if zero_out_resconns is not None:
if (type(zero_out_resconns) is int and i >= (zero_out_resconns - 1)) or \
type(zero_out_resconns) is list and i in zero_out_resconns:
res_samples = [torch.zeros_like(x) for x in res_samples]
# down_block_res_samples = [torch.zeros_like(x) for x in down_block_res_samples]
extracted_res_conns[i] = res_samples
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
encoder_attention_mask=encoder_attention_mask,
encoder_hidden_states_1=encoder_hidden_states_1,
encoder_attention_mask_1=encoder_attention_mask_1,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
if self.model.unet.conv_norm_out:
sample = self.model.unet.conv_norm_out(sample)
sample = self.model.unet.conv_act(sample)
sample = self.model.unet.conv_out(sample)
if not return_dict:
return (sample,)
return UNet2DConditionOutput(sample=sample), h_space, extracted_res_conns
def forward(self, *args, **kwargs):
return self
def load_model(model_id, device, num_diffusion_steps, double_precision=False):
ldm_stable = AudioLDM2Wrapper(model_id=model_id, device=device, double_precision=double_precision)
ldm_stable.load_scheduler()
ldm_stable.model.scheduler.set_timesteps(num_diffusion_steps, device=device)
torch.cuda.empty_cache()
# controller = AttentionStore()
# controller = EmptyControl()
# register_attention_control(ldm_stable.model, controller)
# return ldm_stable, controller
return ldm_stable