Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- cars.ipynb +1452 -0
- cars.xls +0 -0
cars.ipynb
ADDED
@@ -0,0 +1,1452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 6,
|
20 |
+
"metadata": {
|
21 |
+
"id": "RdGj5r4ilCXW"
|
22 |
+
},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"import pandas as pd\n",
|
26 |
+
"from sklearn.model_selection import train_test_split\n",
|
27 |
+
"from sklearn.linear_model import LinearRegression\n",
|
28 |
+
"from sklearn.metrics import r2_score,mean_squared_error\n",
|
29 |
+
"from sklearn.compose import ColumnTransformer\n",
|
30 |
+
"from sklearn.preprocessing import OneHotEncoder, StandardScaler\n",
|
31 |
+
"from sklearn.pipeline import Pipeline"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "markdown",
|
36 |
+
"source": [
|
37 |
+
"import pandas as pd = Verileri tablolama ve ΓΆn iΕleme aΕamalarΔ±nda kullanΔ±ldΔ±.from sklearn.model_selection import train_test_split: Ana veri setini eΔitim ve test verilerine ayΔ±rmak iΓ§in kullanΔ±ldΔ±.\n",
|
38 |
+
"from sklearn.linear_model import LinearRegression : DoΔrusal regresyon\n",
|
39 |
+
"from sklearn.metrics import r2_score,mean_squared_error : modelimizin performansını âlçmek için\n",
|
40 |
+
"from sklearn.compose import ColumnTransformer :SΓΌtun dΓΆnΓΌΕΓΌm iΕlemleri\n",
|
41 |
+
"from sklearn.preprocessing import OneHotEncoder, StandardScaler : kategori - sayΔ±sal dΓΆnΓΌΕΓΌm ve ΓΆlΓ§eklendirme\n",
|
42 |
+
"from sklearn.pipeline import Pipeline : Veri iΕleme hattΔ±"
|
43 |
+
],
|
44 |
+
"metadata": {
|
45 |
+
"id": "xOSP5tvYlhT8"
|
46 |
+
}
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"source": [
|
51 |
+
"pip install xldr"
|
52 |
+
],
|
53 |
+
"metadata": {
|
54 |
+
"colab": {
|
55 |
+
"base_uri": "https://localhost:8080/"
|
56 |
+
},
|
57 |
+
"collapsed": true,
|
58 |
+
"id": "RB7HDScwl5fB",
|
59 |
+
"outputId": "33075e92-e29d-4ad6-a849-474362666f11"
|
60 |
+
},
|
61 |
+
"execution_count": 7,
|
62 |
+
"outputs": [
|
63 |
+
{
|
64 |
+
"output_type": "stream",
|
65 |
+
"name": "stdout",
|
66 |
+
"text": [
|
67 |
+
"\u001b[31mERROR: Could not find a version that satisfies the requirement xldr (from versions: none)\u001b[0m\u001b[31m\n",
|
68 |
+
"\u001b[0m\u001b[31mERROR: No matching distribution found for xldr\u001b[0m\u001b[31m\n",
|
69 |
+
"\u001b[0m"
|
70 |
+
]
|
71 |
+
}
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "markdown",
|
76 |
+
"source": [
|
77 |
+
"Proje excel dosyasΔ± olduΔu iΓ§in"
|
78 |
+
],
|
79 |
+
"metadata": {
|
80 |
+
"id": "kj4-OtBBmFuG"
|
81 |
+
}
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"source": [
|
86 |
+
"df=pd.read_excel('cars.xls')\n",
|
87 |
+
"df"
|
88 |
+
],
|
89 |
+
"metadata": {
|
90 |
+
"colab": {
|
91 |
+
"base_uri": "https://localhost:8080/",
|
92 |
+
"height": 423
|
93 |
+
},
|
94 |
+
"id": "95ASq-kSnjIB",
|
95 |
+
"outputId": "3a194963-1a64-4919-c089-3611fd6402de"
|
96 |
+
},
|
97 |
+
"execution_count": 9,
|
98 |
+
"outputs": [
|
99 |
+
{
|
100 |
+
"output_type": "execute_result",
|
101 |
+
"data": {
|
102 |
+
"text/plain": [
|
103 |
+
" Price Mileage Make Model Trim Type Cylinder \\\n",
|
104 |
+
"0 17314.103129 8221 Buick Century Sedan 4D Sedan 6 \n",
|
105 |
+
"1 17542.036083 9135 Buick Century Sedan 4D Sedan 6 \n",
|
106 |
+
"2 16218.847862 13196 Buick Century Sedan 4D Sedan 6 \n",
|
107 |
+
"3 16336.913140 16342 Buick Century Sedan 4D Sedan 6 \n",
|
108 |
+
"4 16339.170324 19832 Buick Century Sedan 4D Sedan 6 \n",
|
109 |
+
".. ... ... ... ... ... ... ... \n",
|
110 |
+
"799 16507.070267 16229 Saturn L Series L300 Sedan 4D Sedan 6 \n",
|
111 |
+
"800 16175.957604 19095 Saturn L Series L300 Sedan 4D Sedan 6 \n",
|
112 |
+
"801 15731.132897 20484 Saturn L Series L300 Sedan 4D Sedan 6 \n",
|
113 |
+
"802 15118.893228 25979 Saturn L Series L300 Sedan 4D Sedan 6 \n",
|
114 |
+
"803 13585.636802 35662 Saturn L Series L300 Sedan 4D Sedan 6 \n",
|
115 |
+
"\n",
|
116 |
+
" Liter Doors Cruise Sound Leather \n",
|
117 |
+
"0 3.1 4 1 1 1 \n",
|
118 |
+
"1 3.1 4 1 1 0 \n",
|
119 |
+
"2 3.1 4 1 1 0 \n",
|
120 |
+
"3 3.1 4 1 0 0 \n",
|
121 |
+
"4 3.1 4 1 0 1 \n",
|
122 |
+
".. ... ... ... ... ... \n",
|
123 |
+
"799 3.0 4 1 0 0 \n",
|
124 |
+
"800 3.0 4 1 1 0 \n",
|
125 |
+
"801 3.0 4 1 1 0 \n",
|
126 |
+
"802 3.0 4 1 1 0 \n",
|
127 |
+
"803 3.0 4 1 0 0 \n",
|
128 |
+
"\n",
|
129 |
+
"[804 rows x 12 columns]"
|
130 |
+
],
|
131 |
+
"text/html": [
|
132 |
+
"\n",
|
133 |
+
" <div id=\"df-3cc9f608-874f-44c8-9e7f-2a19395206c5\" class=\"colab-df-container\">\n",
|
134 |
+
" <div>\n",
|
135 |
+
"<style scoped>\n",
|
136 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
137 |
+
" vertical-align: middle;\n",
|
138 |
+
" }\n",
|
139 |
+
"\n",
|
140 |
+
" .dataframe tbody tr th {\n",
|
141 |
+
" vertical-align: top;\n",
|
142 |
+
" }\n",
|
143 |
+
"\n",
|
144 |
+
" .dataframe thead th {\n",
|
145 |
+
" text-align: right;\n",
|
146 |
+
" }\n",
|
147 |
+
"</style>\n",
|
148 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
149 |
+
" <thead>\n",
|
150 |
+
" <tr style=\"text-align: right;\">\n",
|
151 |
+
" <th></th>\n",
|
152 |
+
" <th>Price</th>\n",
|
153 |
+
" <th>Mileage</th>\n",
|
154 |
+
" <th>Make</th>\n",
|
155 |
+
" <th>Model</th>\n",
|
156 |
+
" <th>Trim</th>\n",
|
157 |
+
" <th>Type</th>\n",
|
158 |
+
" <th>Cylinder</th>\n",
|
159 |
+
" <th>Liter</th>\n",
|
160 |
+
" <th>Doors</th>\n",
|
161 |
+
" <th>Cruise</th>\n",
|
162 |
+
" <th>Sound</th>\n",
|
163 |
+
" <th>Leather</th>\n",
|
164 |
+
" </tr>\n",
|
165 |
+
" </thead>\n",
|
166 |
+
" <tbody>\n",
|
167 |
+
" <tr>\n",
|
168 |
+
" <th>0</th>\n",
|
169 |
+
" <td>17314.103129</td>\n",
|
170 |
+
" <td>8221</td>\n",
|
171 |
+
" <td>Buick</td>\n",
|
172 |
+
" <td>Century</td>\n",
|
173 |
+
" <td>Sedan 4D</td>\n",
|
174 |
+
" <td>Sedan</td>\n",
|
175 |
+
" <td>6</td>\n",
|
176 |
+
" <td>3.1</td>\n",
|
177 |
+
" <td>4</td>\n",
|
178 |
+
" <td>1</td>\n",
|
179 |
+
" <td>1</td>\n",
|
180 |
+
" <td>1</td>\n",
|
181 |
+
" </tr>\n",
|
182 |
+
" <tr>\n",
|
183 |
+
" <th>1</th>\n",
|
184 |
+
" <td>17542.036083</td>\n",
|
185 |
+
" <td>9135</td>\n",
|
186 |
+
" <td>Buick</td>\n",
|
187 |
+
" <td>Century</td>\n",
|
188 |
+
" <td>Sedan 4D</td>\n",
|
189 |
+
" <td>Sedan</td>\n",
|
190 |
+
" <td>6</td>\n",
|
191 |
+
" <td>3.1</td>\n",
|
192 |
+
" <td>4</td>\n",
|
193 |
+
" <td>1</td>\n",
|
194 |
+
" <td>1</td>\n",
|
195 |
+
" <td>0</td>\n",
|
196 |
+
" </tr>\n",
|
197 |
+
" <tr>\n",
|
198 |
+
" <th>2</th>\n",
|
199 |
+
" <td>16218.847862</td>\n",
|
200 |
+
" <td>13196</td>\n",
|
201 |
+
" <td>Buick</td>\n",
|
202 |
+
" <td>Century</td>\n",
|
203 |
+
" <td>Sedan 4D</td>\n",
|
204 |
+
" <td>Sedan</td>\n",
|
205 |
+
" <td>6</td>\n",
|
206 |
+
" <td>3.1</td>\n",
|
207 |
+
" <td>4</td>\n",
|
208 |
+
" <td>1</td>\n",
|
209 |
+
" <td>1</td>\n",
|
210 |
+
" <td>0</td>\n",
|
211 |
+
" </tr>\n",
|
212 |
+
" <tr>\n",
|
213 |
+
" <th>3</th>\n",
|
214 |
+
" <td>16336.913140</td>\n",
|
215 |
+
" <td>16342</td>\n",
|
216 |
+
" <td>Buick</td>\n",
|
217 |
+
" <td>Century</td>\n",
|
218 |
+
" <td>Sedan 4D</td>\n",
|
219 |
+
" <td>Sedan</td>\n",
|
220 |
+
" <td>6</td>\n",
|
221 |
+
" <td>3.1</td>\n",
|
222 |
+
" <td>4</td>\n",
|
223 |
+
" <td>1</td>\n",
|
224 |
+
" <td>0</td>\n",
|
225 |
+
" <td>0</td>\n",
|
226 |
+
" </tr>\n",
|
227 |
+
" <tr>\n",
|
228 |
+
" <th>4</th>\n",
|
229 |
+
" <td>16339.170324</td>\n",
|
230 |
+
" <td>19832</td>\n",
|
231 |
+
" <td>Buick</td>\n",
|
232 |
+
" <td>Century</td>\n",
|
233 |
+
" <td>Sedan 4D</td>\n",
|
234 |
+
" <td>Sedan</td>\n",
|
235 |
+
" <td>6</td>\n",
|
236 |
+
" <td>3.1</td>\n",
|
237 |
+
" <td>4</td>\n",
|
238 |
+
" <td>1</td>\n",
|
239 |
+
" <td>0</td>\n",
|
240 |
+
" <td>1</td>\n",
|
241 |
+
" </tr>\n",
|
242 |
+
" <tr>\n",
|
243 |
+
" <th>...</th>\n",
|
244 |
+
" <td>...</td>\n",
|
245 |
+
" <td>...</td>\n",
|
246 |
+
" <td>...</td>\n",
|
247 |
+
" <td>...</td>\n",
|
248 |
+
" <td>...</td>\n",
|
249 |
+
" <td>...</td>\n",
|
250 |
+
" <td>...</td>\n",
|
251 |
+
" <td>...</td>\n",
|
252 |
+
" <td>...</td>\n",
|
253 |
+
" <td>...</td>\n",
|
254 |
+
" <td>...</td>\n",
|
255 |
+
" <td>...</td>\n",
|
256 |
+
" </tr>\n",
|
257 |
+
" <tr>\n",
|
258 |
+
" <th>799</th>\n",
|
259 |
+
" <td>16507.070267</td>\n",
|
260 |
+
" <td>16229</td>\n",
|
261 |
+
" <td>Saturn</td>\n",
|
262 |
+
" <td>L Series</td>\n",
|
263 |
+
" <td>L300 Sedan 4D</td>\n",
|
264 |
+
" <td>Sedan</td>\n",
|
265 |
+
" <td>6</td>\n",
|
266 |
+
" <td>3.0</td>\n",
|
267 |
+
" <td>4</td>\n",
|
268 |
+
" <td>1</td>\n",
|
269 |
+
" <td>0</td>\n",
|
270 |
+
" <td>0</td>\n",
|
271 |
+
" </tr>\n",
|
272 |
+
" <tr>\n",
|
273 |
+
" <th>800</th>\n",
|
274 |
+
" <td>16175.957604</td>\n",
|
275 |
+
" <td>19095</td>\n",
|
276 |
+
" <td>Saturn</td>\n",
|
277 |
+
" <td>L Series</td>\n",
|
278 |
+
" <td>L300 Sedan 4D</td>\n",
|
279 |
+
" <td>Sedan</td>\n",
|
280 |
+
" <td>6</td>\n",
|
281 |
+
" <td>3.0</td>\n",
|
282 |
+
" <td>4</td>\n",
|
283 |
+
" <td>1</td>\n",
|
284 |
+
" <td>1</td>\n",
|
285 |
+
" <td>0</td>\n",
|
286 |
+
" </tr>\n",
|
287 |
+
" <tr>\n",
|
288 |
+
" <th>801</th>\n",
|
289 |
+
" <td>15731.132897</td>\n",
|
290 |
+
" <td>20484</td>\n",
|
291 |
+
" <td>Saturn</td>\n",
|
292 |
+
" <td>L Series</td>\n",
|
293 |
+
" <td>L300 Sedan 4D</td>\n",
|
294 |
+
" <td>Sedan</td>\n",
|
295 |
+
" <td>6</td>\n",
|
296 |
+
" <td>3.0</td>\n",
|
297 |
+
" <td>4</td>\n",
|
298 |
+
" <td>1</td>\n",
|
299 |
+
" <td>1</td>\n",
|
300 |
+
" <td>0</td>\n",
|
301 |
+
" </tr>\n",
|
302 |
+
" <tr>\n",
|
303 |
+
" <th>802</th>\n",
|
304 |
+
" <td>15118.893228</td>\n",
|
305 |
+
" <td>25979</td>\n",
|
306 |
+
" <td>Saturn</td>\n",
|
307 |
+
" <td>L Series</td>\n",
|
308 |
+
" <td>L300 Sedan 4D</td>\n",
|
309 |
+
" <td>Sedan</td>\n",
|
310 |
+
" <td>6</td>\n",
|
311 |
+
" <td>3.0</td>\n",
|
312 |
+
" <td>4</td>\n",
|
313 |
+
" <td>1</td>\n",
|
314 |
+
" <td>1</td>\n",
|
315 |
+
" <td>0</td>\n",
|
316 |
+
" </tr>\n",
|
317 |
+
" <tr>\n",
|
318 |
+
" <th>803</th>\n",
|
319 |
+
" <td>13585.636802</td>\n",
|
320 |
+
" <td>35662</td>\n",
|
321 |
+
" <td>Saturn</td>\n",
|
322 |
+
" <td>L Series</td>\n",
|
323 |
+
" <td>L300 Sedan 4D</td>\n",
|
324 |
+
" <td>Sedan</td>\n",
|
325 |
+
" <td>6</td>\n",
|
326 |
+
" <td>3.0</td>\n",
|
327 |
+
" <td>4</td>\n",
|
328 |
+
" <td>1</td>\n",
|
329 |
+
" <td>0</td>\n",
|
330 |
+
" <td>0</td>\n",
|
331 |
+
" </tr>\n",
|
332 |
+
" </tbody>\n",
|
333 |
+
"</table>\n",
|
334 |
+
"<p>804 rows Γ 12 columns</p>\n",
|
335 |
+
"</div>\n",
|
336 |
+
" <div class=\"colab-df-buttons\">\n",
|
337 |
+
"\n",
|
338 |
+
" <div class=\"colab-df-container\">\n",
|
339 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-3cc9f608-874f-44c8-9e7f-2a19395206c5')\"\n",
|
340 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
341 |
+
" style=\"display:none;\">\n",
|
342 |
+
"\n",
|
343 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
344 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
345 |
+
" </svg>\n",
|
346 |
+
" </button>\n",
|
347 |
+
"\n",
|
348 |
+
" <style>\n",
|
349 |
+
" .colab-df-container {\n",
|
350 |
+
" display:flex;\n",
|
351 |
+
" gap: 12px;\n",
|
352 |
+
" }\n",
|
353 |
+
"\n",
|
354 |
+
" .colab-df-convert {\n",
|
355 |
+
" background-color: #E8F0FE;\n",
|
356 |
+
" border: none;\n",
|
357 |
+
" border-radius: 50%;\n",
|
358 |
+
" cursor: pointer;\n",
|
359 |
+
" display: none;\n",
|
360 |
+
" fill: #1967D2;\n",
|
361 |
+
" height: 32px;\n",
|
362 |
+
" padding: 0 0 0 0;\n",
|
363 |
+
" width: 32px;\n",
|
364 |
+
" }\n",
|
365 |
+
"\n",
|
366 |
+
" .colab-df-convert:hover {\n",
|
367 |
+
" background-color: #E2EBFA;\n",
|
368 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
369 |
+
" fill: #174EA6;\n",
|
370 |
+
" }\n",
|
371 |
+
"\n",
|
372 |
+
" .colab-df-buttons div {\n",
|
373 |
+
" margin-bottom: 4px;\n",
|
374 |
+
" }\n",
|
375 |
+
"\n",
|
376 |
+
" [theme=dark] .colab-df-convert {\n",
|
377 |
+
" background-color: #3B4455;\n",
|
378 |
+
" fill: #D2E3FC;\n",
|
379 |
+
" }\n",
|
380 |
+
"\n",
|
381 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
382 |
+
" background-color: #434B5C;\n",
|
383 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
384 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
385 |
+
" fill: #FFFFFF;\n",
|
386 |
+
" }\n",
|
387 |
+
" </style>\n",
|
388 |
+
"\n",
|
389 |
+
" <script>\n",
|
390 |
+
" const buttonEl =\n",
|
391 |
+
" document.querySelector('#df-3cc9f608-874f-44c8-9e7f-2a19395206c5 button.colab-df-convert');\n",
|
392 |
+
" buttonEl.style.display =\n",
|
393 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
394 |
+
"\n",
|
395 |
+
" async function convertToInteractive(key) {\n",
|
396 |
+
" const element = document.querySelector('#df-3cc9f608-874f-44c8-9e7f-2a19395206c5');\n",
|
397 |
+
" const dataTable =\n",
|
398 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
399 |
+
" [key], {});\n",
|
400 |
+
" if (!dataTable) return;\n",
|
401 |
+
"\n",
|
402 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
403 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
404 |
+
" + ' to learn more about interactive tables.';\n",
|
405 |
+
" element.innerHTML = '';\n",
|
406 |
+
" dataTable['output_type'] = 'display_data';\n",
|
407 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
408 |
+
" const docLink = document.createElement('div');\n",
|
409 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
410 |
+
" element.appendChild(docLink);\n",
|
411 |
+
" }\n",
|
412 |
+
" </script>\n",
|
413 |
+
" </div>\n",
|
414 |
+
"\n",
|
415 |
+
"\n",
|
416 |
+
"<div id=\"df-6299111d-1cc8-4e91-adc7-252cf17863c3\">\n",
|
417 |
+
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-6299111d-1cc8-4e91-adc7-252cf17863c3')\"\n",
|
418 |
+
" title=\"Suggest charts\"\n",
|
419 |
+
" style=\"display:none;\">\n",
|
420 |
+
"\n",
|
421 |
+
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
422 |
+
" width=\"24px\">\n",
|
423 |
+
" <g>\n",
|
424 |
+
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
425 |
+
" </g>\n",
|
426 |
+
"</svg>\n",
|
427 |
+
" </button>\n",
|
428 |
+
"\n",
|
429 |
+
"<style>\n",
|
430 |
+
" .colab-df-quickchart {\n",
|
431 |
+
" --bg-color: #E8F0FE;\n",
|
432 |
+
" --fill-color: #1967D2;\n",
|
433 |
+
" --hover-bg-color: #E2EBFA;\n",
|
434 |
+
" --hover-fill-color: #174EA6;\n",
|
435 |
+
" --disabled-fill-color: #AAA;\n",
|
436 |
+
" --disabled-bg-color: #DDD;\n",
|
437 |
+
" }\n",
|
438 |
+
"\n",
|
439 |
+
" [theme=dark] .colab-df-quickchart {\n",
|
440 |
+
" --bg-color: #3B4455;\n",
|
441 |
+
" --fill-color: #D2E3FC;\n",
|
442 |
+
" --hover-bg-color: #434B5C;\n",
|
443 |
+
" --hover-fill-color: #FFFFFF;\n",
|
444 |
+
" --disabled-bg-color: #3B4455;\n",
|
445 |
+
" --disabled-fill-color: #666;\n",
|
446 |
+
" }\n",
|
447 |
+
"\n",
|
448 |
+
" .colab-df-quickchart {\n",
|
449 |
+
" background-color: var(--bg-color);\n",
|
450 |
+
" border: none;\n",
|
451 |
+
" border-radius: 50%;\n",
|
452 |
+
" cursor: pointer;\n",
|
453 |
+
" display: none;\n",
|
454 |
+
" fill: var(--fill-color);\n",
|
455 |
+
" height: 32px;\n",
|
456 |
+
" padding: 0;\n",
|
457 |
+
" width: 32px;\n",
|
458 |
+
" }\n",
|
459 |
+
"\n",
|
460 |
+
" .colab-df-quickchart:hover {\n",
|
461 |
+
" background-color: var(--hover-bg-color);\n",
|
462 |
+
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
463 |
+
" fill: var(--button-hover-fill-color);\n",
|
464 |
+
" }\n",
|
465 |
+
"\n",
|
466 |
+
" .colab-df-quickchart-complete:disabled,\n",
|
467 |
+
" .colab-df-quickchart-complete:disabled:hover {\n",
|
468 |
+
" background-color: var(--disabled-bg-color);\n",
|
469 |
+
" fill: var(--disabled-fill-color);\n",
|
470 |
+
" box-shadow: none;\n",
|
471 |
+
" }\n",
|
472 |
+
"\n",
|
473 |
+
" .colab-df-spinner {\n",
|
474 |
+
" border: 2px solid var(--fill-color);\n",
|
475 |
+
" border-color: transparent;\n",
|
476 |
+
" border-bottom-color: var(--fill-color);\n",
|
477 |
+
" animation:\n",
|
478 |
+
" spin 1s steps(1) infinite;\n",
|
479 |
+
" }\n",
|
480 |
+
"\n",
|
481 |
+
" @keyframes spin {\n",
|
482 |
+
" 0% {\n",
|
483 |
+
" border-color: transparent;\n",
|
484 |
+
" border-bottom-color: var(--fill-color);\n",
|
485 |
+
" border-left-color: var(--fill-color);\n",
|
486 |
+
" }\n",
|
487 |
+
" 20% {\n",
|
488 |
+
" border-color: transparent;\n",
|
489 |
+
" border-left-color: var(--fill-color);\n",
|
490 |
+
" border-top-color: var(--fill-color);\n",
|
491 |
+
" }\n",
|
492 |
+
" 30% {\n",
|
493 |
+
" border-color: transparent;\n",
|
494 |
+
" border-left-color: var(--fill-color);\n",
|
495 |
+
" border-top-color: var(--fill-color);\n",
|
496 |
+
" border-right-color: var(--fill-color);\n",
|
497 |
+
" }\n",
|
498 |
+
" 40% {\n",
|
499 |
+
" border-color: transparent;\n",
|
500 |
+
" border-right-color: var(--fill-color);\n",
|
501 |
+
" border-top-color: var(--fill-color);\n",
|
502 |
+
" }\n",
|
503 |
+
" 60% {\n",
|
504 |
+
" border-color: transparent;\n",
|
505 |
+
" border-right-color: var(--fill-color);\n",
|
506 |
+
" }\n",
|
507 |
+
" 80% {\n",
|
508 |
+
" border-color: transparent;\n",
|
509 |
+
" border-right-color: var(--fill-color);\n",
|
510 |
+
" border-bottom-color: var(--fill-color);\n",
|
511 |
+
" }\n",
|
512 |
+
" 90% {\n",
|
513 |
+
" border-color: transparent;\n",
|
514 |
+
" border-bottom-color: var(--fill-color);\n",
|
515 |
+
" }\n",
|
516 |
+
" }\n",
|
517 |
+
"</style>\n",
|
518 |
+
"\n",
|
519 |
+
" <script>\n",
|
520 |
+
" async function quickchart(key) {\n",
|
521 |
+
" const quickchartButtonEl =\n",
|
522 |
+
" document.querySelector('#' + key + ' button');\n",
|
523 |
+
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
524 |
+
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
525 |
+
" try {\n",
|
526 |
+
" const charts = await google.colab.kernel.invokeFunction(\n",
|
527 |
+
" 'suggestCharts', [key], {});\n",
|
528 |
+
" } catch (error) {\n",
|
529 |
+
" console.error('Error during call to suggestCharts:', error);\n",
|
530 |
+
" }\n",
|
531 |
+
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
532 |
+
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
533 |
+
" }\n",
|
534 |
+
" (() => {\n",
|
535 |
+
" let quickchartButtonEl =\n",
|
536 |
+
" document.querySelector('#df-6299111d-1cc8-4e91-adc7-252cf17863c3 button');\n",
|
537 |
+
" quickchartButtonEl.style.display =\n",
|
538 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
539 |
+
" })();\n",
|
540 |
+
" </script>\n",
|
541 |
+
"</div>\n",
|
542 |
+
"\n",
|
543 |
+
" <div id=\"id_d344df63-81a5-4d4a-b319-bdbbb7b95641\">\n",
|
544 |
+
" <style>\n",
|
545 |
+
" .colab-df-generate {\n",
|
546 |
+
" background-color: #E8F0FE;\n",
|
547 |
+
" border: none;\n",
|
548 |
+
" border-radius: 50%;\n",
|
549 |
+
" cursor: pointer;\n",
|
550 |
+
" display: none;\n",
|
551 |
+
" fill: #1967D2;\n",
|
552 |
+
" height: 32px;\n",
|
553 |
+
" padding: 0 0 0 0;\n",
|
554 |
+
" width: 32px;\n",
|
555 |
+
" }\n",
|
556 |
+
"\n",
|
557 |
+
" .colab-df-generate:hover {\n",
|
558 |
+
" background-color: #E2EBFA;\n",
|
559 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
560 |
+
" fill: #174EA6;\n",
|
561 |
+
" }\n",
|
562 |
+
"\n",
|
563 |
+
" [theme=dark] .colab-df-generate {\n",
|
564 |
+
" background-color: #3B4455;\n",
|
565 |
+
" fill: #D2E3FC;\n",
|
566 |
+
" }\n",
|
567 |
+
"\n",
|
568 |
+
" [theme=dark] .colab-df-generate:hover {\n",
|
569 |
+
" background-color: #434B5C;\n",
|
570 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
571 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
572 |
+
" fill: #FFFFFF;\n",
|
573 |
+
" }\n",
|
574 |
+
" </style>\n",
|
575 |
+
" <button class=\"colab-df-generate\" onclick=\"generateWithVariable('df')\"\n",
|
576 |
+
" title=\"Generate code using this dataframe.\"\n",
|
577 |
+
" style=\"display:none;\">\n",
|
578 |
+
"\n",
|
579 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
580 |
+
" width=\"24px\">\n",
|
581 |
+
" <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n",
|
582 |
+
" </svg>\n",
|
583 |
+
" </button>\n",
|
584 |
+
" <script>\n",
|
585 |
+
" (() => {\n",
|
586 |
+
" const buttonEl =\n",
|
587 |
+
" document.querySelector('#id_d344df63-81a5-4d4a-b319-bdbbb7b95641 button.colab-df-generate');\n",
|
588 |
+
" buttonEl.style.display =\n",
|
589 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
590 |
+
"\n",
|
591 |
+
" buttonEl.onclick = () => {\n",
|
592 |
+
" google.colab.notebook.generateWithVariable('df');\n",
|
593 |
+
" }\n",
|
594 |
+
" })();\n",
|
595 |
+
" </script>\n",
|
596 |
+
" </div>\n",
|
597 |
+
"\n",
|
598 |
+
" </div>\n",
|
599 |
+
" </div>\n"
|
600 |
+
],
|
601 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
602 |
+
"type": "dataframe",
|
603 |
+
"variable_name": "df",
|
604 |
+
"summary": "{\n \"name\": \"df\",\n \"rows\": 804,\n \"fields\": [\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9884.852800898008,\n \"min\": 8638.930895260657,\n \"max\": 70755.46671654288,\n \"num_unique_values\": 798,\n \"samples\": [\n 28432.824212532152,\n 24852.495280683135,\n 22661.048485078372\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mileage\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8196,\n \"min\": 266,\n \"max\": 50387,\n \"num_unique_values\": 791,\n \"samples\": [\n 21386,\n 29649,\n 29368\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Make\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"Buick\",\n \"Cadillac\",\n \"Saturn\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Model\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 32,\n \"samples\": [\n \"9-2X AWD\",\n \"Impala\",\n \"Vibe\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Trim\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 47,\n \"samples\": [\n \"GXP Sedan 4D\",\n \"Aero Sedan 4D\",\n \"SS Coupe 2D\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Convertible\",\n \"Wagon\",\n \"Hatchback\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cylinder\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 4,\n \"max\": 8,\n \"num_unique_values\": 3,\n \"samples\": [\n 6,\n 8,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Liter\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.1055619585094583,\n \"min\": 1.6,\n \"max\": 6.0,\n \"num_unique_values\": 16,\n \"samples\": [\n 3.1,\n 3.6,\n 4.6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Doors\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2,\n \"max\": 4,\n \"num_unique_values\": 2,\n \"samples\": [\n 2,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cruise\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sound\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Leather\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
605 |
+
}
|
606 |
+
},
|
607 |
+
"metadata": {},
|
608 |
+
"execution_count": 9
|
609 |
+
}
|
610 |
+
]
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"cell_type": "markdown",
|
614 |
+
"source": [
|
615 |
+
"Proje yΓΌklendi."
|
616 |
+
],
|
617 |
+
"metadata": {
|
618 |
+
"id": "RIYLZX0KoufQ"
|
619 |
+
}
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"cell_type": "code",
|
623 |
+
"source": [
|
624 |
+
"df.info()"
|
625 |
+
],
|
626 |
+
"metadata": {
|
627 |
+
"colab": {
|
628 |
+
"base_uri": "https://localhost:8080/"
|
629 |
+
},
|
630 |
+
"id": "V3ONZtVtovzg",
|
631 |
+
"outputId": "ba9d149d-dd08-4d15-a149-cf948fe3153a"
|
632 |
+
},
|
633 |
+
"execution_count": 10,
|
634 |
+
"outputs": [
|
635 |
+
{
|
636 |
+
"output_type": "stream",
|
637 |
+
"name": "stdout",
|
638 |
+
"text": [
|
639 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
640 |
+
"RangeIndex: 804 entries, 0 to 803\n",
|
641 |
+
"Data columns (total 12 columns):\n",
|
642 |
+
" # Column Non-Null Count Dtype \n",
|
643 |
+
"--- ------ -------------- ----- \n",
|
644 |
+
" 0 Price 804 non-null float64\n",
|
645 |
+
" 1 Mileage 804 non-null int64 \n",
|
646 |
+
" 2 Make 804 non-null object \n",
|
647 |
+
" 3 Model 804 non-null object \n",
|
648 |
+
" 4 Trim 804 non-null object \n",
|
649 |
+
" 5 Type 804 non-null object \n",
|
650 |
+
" 6 Cylinder 804 non-null int64 \n",
|
651 |
+
" 7 Liter 804 non-null float64\n",
|
652 |
+
" 8 Doors 804 non-null int64 \n",
|
653 |
+
" 9 Cruise 804 non-null int64 \n",
|
654 |
+
" 10 Sound 804 non-null int64 \n",
|
655 |
+
" 11 Leather 804 non-null int64 \n",
|
656 |
+
"dtypes: float64(2), int64(6), object(4)\n",
|
657 |
+
"memory usage: 75.5+ KB\n"
|
658 |
+
]
|
659 |
+
}
|
660 |
+
]
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"cell_type": "markdown",
|
664 |
+
"source": [
|
665 |
+
"Proje hakkΔ±nda bilgi edinildi."
|
666 |
+
],
|
667 |
+
"metadata": {
|
668 |
+
"id": "KMMxJh4epowO"
|
669 |
+
}
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"cell_type": "code",
|
673 |
+
"source": [
|
674 |
+
"df.head(5)\n"
|
675 |
+
],
|
676 |
+
"metadata": {
|
677 |
+
"colab": {
|
678 |
+
"base_uri": "https://localhost:8080/",
|
679 |
+
"height": 206
|
680 |
+
},
|
681 |
+
"id": "4KR2FxY6qKgk",
|
682 |
+
"outputId": "1112a6b1-a1ea-49b7-e8b1-04c2f7e69350"
|
683 |
+
},
|
684 |
+
"execution_count": 11,
|
685 |
+
"outputs": [
|
686 |
+
{
|
687 |
+
"output_type": "execute_result",
|
688 |
+
"data": {
|
689 |
+
"text/plain": [
|
690 |
+
" Price Mileage Make Model Trim Type Cylinder Liter \\\n",
|
691 |
+
"0 17314.103129 8221 Buick Century Sedan 4D Sedan 6 3.1 \n",
|
692 |
+
"1 17542.036083 9135 Buick Century Sedan 4D Sedan 6 3.1 \n",
|
693 |
+
"2 16218.847862 13196 Buick Century Sedan 4D Sedan 6 3.1 \n",
|
694 |
+
"3 16336.913140 16342 Buick Century Sedan 4D Sedan 6 3.1 \n",
|
695 |
+
"4 16339.170324 19832 Buick Century Sedan 4D Sedan 6 3.1 \n",
|
696 |
+
"\n",
|
697 |
+
" Doors Cruise Sound Leather \n",
|
698 |
+
"0 4 1 1 1 \n",
|
699 |
+
"1 4 1 1 0 \n",
|
700 |
+
"2 4 1 1 0 \n",
|
701 |
+
"3 4 1 0 0 \n",
|
702 |
+
"4 4 1 0 1 "
|
703 |
+
],
|
704 |
+
"text/html": [
|
705 |
+
"\n",
|
706 |
+
" <div id=\"df-651124a1-30aa-4000-a85f-e210b7ebab84\" class=\"colab-df-container\">\n",
|
707 |
+
" <div>\n",
|
708 |
+
"<style scoped>\n",
|
709 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
710 |
+
" vertical-align: middle;\n",
|
711 |
+
" }\n",
|
712 |
+
"\n",
|
713 |
+
" .dataframe tbody tr th {\n",
|
714 |
+
" vertical-align: top;\n",
|
715 |
+
" }\n",
|
716 |
+
"\n",
|
717 |
+
" .dataframe thead th {\n",
|
718 |
+
" text-align: right;\n",
|
719 |
+
" }\n",
|
720 |
+
"</style>\n",
|
721 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
722 |
+
" <thead>\n",
|
723 |
+
" <tr style=\"text-align: right;\">\n",
|
724 |
+
" <th></th>\n",
|
725 |
+
" <th>Price</th>\n",
|
726 |
+
" <th>Mileage</th>\n",
|
727 |
+
" <th>Make</th>\n",
|
728 |
+
" <th>Model</th>\n",
|
729 |
+
" <th>Trim</th>\n",
|
730 |
+
" <th>Type</th>\n",
|
731 |
+
" <th>Cylinder</th>\n",
|
732 |
+
" <th>Liter</th>\n",
|
733 |
+
" <th>Doors</th>\n",
|
734 |
+
" <th>Cruise</th>\n",
|
735 |
+
" <th>Sound</th>\n",
|
736 |
+
" <th>Leather</th>\n",
|
737 |
+
" </tr>\n",
|
738 |
+
" </thead>\n",
|
739 |
+
" <tbody>\n",
|
740 |
+
" <tr>\n",
|
741 |
+
" <th>0</th>\n",
|
742 |
+
" <td>17314.103129</td>\n",
|
743 |
+
" <td>8221</td>\n",
|
744 |
+
" <td>Buick</td>\n",
|
745 |
+
" <td>Century</td>\n",
|
746 |
+
" <td>Sedan 4D</td>\n",
|
747 |
+
" <td>Sedan</td>\n",
|
748 |
+
" <td>6</td>\n",
|
749 |
+
" <td>3.1</td>\n",
|
750 |
+
" <td>4</td>\n",
|
751 |
+
" <td>1</td>\n",
|
752 |
+
" <td>1</td>\n",
|
753 |
+
" <td>1</td>\n",
|
754 |
+
" </tr>\n",
|
755 |
+
" <tr>\n",
|
756 |
+
" <th>1</th>\n",
|
757 |
+
" <td>17542.036083</td>\n",
|
758 |
+
" <td>9135</td>\n",
|
759 |
+
" <td>Buick</td>\n",
|
760 |
+
" <td>Century</td>\n",
|
761 |
+
" <td>Sedan 4D</td>\n",
|
762 |
+
" <td>Sedan</td>\n",
|
763 |
+
" <td>6</td>\n",
|
764 |
+
" <td>3.1</td>\n",
|
765 |
+
" <td>4</td>\n",
|
766 |
+
" <td>1</td>\n",
|
767 |
+
" <td>1</td>\n",
|
768 |
+
" <td>0</td>\n",
|
769 |
+
" </tr>\n",
|
770 |
+
" <tr>\n",
|
771 |
+
" <th>2</th>\n",
|
772 |
+
" <td>16218.847862</td>\n",
|
773 |
+
" <td>13196</td>\n",
|
774 |
+
" <td>Buick</td>\n",
|
775 |
+
" <td>Century</td>\n",
|
776 |
+
" <td>Sedan 4D</td>\n",
|
777 |
+
" <td>Sedan</td>\n",
|
778 |
+
" <td>6</td>\n",
|
779 |
+
" <td>3.1</td>\n",
|
780 |
+
" <td>4</td>\n",
|
781 |
+
" <td>1</td>\n",
|
782 |
+
" <td>1</td>\n",
|
783 |
+
" <td>0</td>\n",
|
784 |
+
" </tr>\n",
|
785 |
+
" <tr>\n",
|
786 |
+
" <th>3</th>\n",
|
787 |
+
" <td>16336.913140</td>\n",
|
788 |
+
" <td>16342</td>\n",
|
789 |
+
" <td>Buick</td>\n",
|
790 |
+
" <td>Century</td>\n",
|
791 |
+
" <td>Sedan 4D</td>\n",
|
792 |
+
" <td>Sedan</td>\n",
|
793 |
+
" <td>6</td>\n",
|
794 |
+
" <td>3.1</td>\n",
|
795 |
+
" <td>4</td>\n",
|
796 |
+
" <td>1</td>\n",
|
797 |
+
" <td>0</td>\n",
|
798 |
+
" <td>0</td>\n",
|
799 |
+
" </tr>\n",
|
800 |
+
" <tr>\n",
|
801 |
+
" <th>4</th>\n",
|
802 |
+
" <td>16339.170324</td>\n",
|
803 |
+
" <td>19832</td>\n",
|
804 |
+
" <td>Buick</td>\n",
|
805 |
+
" <td>Century</td>\n",
|
806 |
+
" <td>Sedan 4D</td>\n",
|
807 |
+
" <td>Sedan</td>\n",
|
808 |
+
" <td>6</td>\n",
|
809 |
+
" <td>3.1</td>\n",
|
810 |
+
" <td>4</td>\n",
|
811 |
+
" <td>1</td>\n",
|
812 |
+
" <td>0</td>\n",
|
813 |
+
" <td>1</td>\n",
|
814 |
+
" </tr>\n",
|
815 |
+
" </tbody>\n",
|
816 |
+
"</table>\n",
|
817 |
+
"</div>\n",
|
818 |
+
" <div class=\"colab-df-buttons\">\n",
|
819 |
+
"\n",
|
820 |
+
" <div class=\"colab-df-container\">\n",
|
821 |
+
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-651124a1-30aa-4000-a85f-e210b7ebab84')\"\n",
|
822 |
+
" title=\"Convert this dataframe to an interactive table.\"\n",
|
823 |
+
" style=\"display:none;\">\n",
|
824 |
+
"\n",
|
825 |
+
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
|
826 |
+
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
|
827 |
+
" </svg>\n",
|
828 |
+
" </button>\n",
|
829 |
+
"\n",
|
830 |
+
" <style>\n",
|
831 |
+
" .colab-df-container {\n",
|
832 |
+
" display:flex;\n",
|
833 |
+
" gap: 12px;\n",
|
834 |
+
" }\n",
|
835 |
+
"\n",
|
836 |
+
" .colab-df-convert {\n",
|
837 |
+
" background-color: #E8F0FE;\n",
|
838 |
+
" border: none;\n",
|
839 |
+
" border-radius: 50%;\n",
|
840 |
+
" cursor: pointer;\n",
|
841 |
+
" display: none;\n",
|
842 |
+
" fill: #1967D2;\n",
|
843 |
+
" height: 32px;\n",
|
844 |
+
" padding: 0 0 0 0;\n",
|
845 |
+
" width: 32px;\n",
|
846 |
+
" }\n",
|
847 |
+
"\n",
|
848 |
+
" .colab-df-convert:hover {\n",
|
849 |
+
" background-color: #E2EBFA;\n",
|
850 |
+
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
851 |
+
" fill: #174EA6;\n",
|
852 |
+
" }\n",
|
853 |
+
"\n",
|
854 |
+
" .colab-df-buttons div {\n",
|
855 |
+
" margin-bottom: 4px;\n",
|
856 |
+
" }\n",
|
857 |
+
"\n",
|
858 |
+
" [theme=dark] .colab-df-convert {\n",
|
859 |
+
" background-color: #3B4455;\n",
|
860 |
+
" fill: #D2E3FC;\n",
|
861 |
+
" }\n",
|
862 |
+
"\n",
|
863 |
+
" [theme=dark] .colab-df-convert:hover {\n",
|
864 |
+
" background-color: #434B5C;\n",
|
865 |
+
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
|
866 |
+
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
|
867 |
+
" fill: #FFFFFF;\n",
|
868 |
+
" }\n",
|
869 |
+
" </style>\n",
|
870 |
+
"\n",
|
871 |
+
" <script>\n",
|
872 |
+
" const buttonEl =\n",
|
873 |
+
" document.querySelector('#df-651124a1-30aa-4000-a85f-e210b7ebab84 button.colab-df-convert');\n",
|
874 |
+
" buttonEl.style.display =\n",
|
875 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
876 |
+
"\n",
|
877 |
+
" async function convertToInteractive(key) {\n",
|
878 |
+
" const element = document.querySelector('#df-651124a1-30aa-4000-a85f-e210b7ebab84');\n",
|
879 |
+
" const dataTable =\n",
|
880 |
+
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
|
881 |
+
" [key], {});\n",
|
882 |
+
" if (!dataTable) return;\n",
|
883 |
+
"\n",
|
884 |
+
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
|
885 |
+
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
|
886 |
+
" + ' to learn more about interactive tables.';\n",
|
887 |
+
" element.innerHTML = '';\n",
|
888 |
+
" dataTable['output_type'] = 'display_data';\n",
|
889 |
+
" await google.colab.output.renderOutput(dataTable, element);\n",
|
890 |
+
" const docLink = document.createElement('div');\n",
|
891 |
+
" docLink.innerHTML = docLinkHtml;\n",
|
892 |
+
" element.appendChild(docLink);\n",
|
893 |
+
" }\n",
|
894 |
+
" </script>\n",
|
895 |
+
" </div>\n",
|
896 |
+
"\n",
|
897 |
+
"\n",
|
898 |
+
"<div id=\"df-f84499d9-ca47-46ab-b03f-e1b46127dadb\">\n",
|
899 |
+
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-f84499d9-ca47-46ab-b03f-e1b46127dadb')\"\n",
|
900 |
+
" title=\"Suggest charts\"\n",
|
901 |
+
" style=\"display:none;\">\n",
|
902 |
+
"\n",
|
903 |
+
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
|
904 |
+
" width=\"24px\">\n",
|
905 |
+
" <g>\n",
|
906 |
+
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
|
907 |
+
" </g>\n",
|
908 |
+
"</svg>\n",
|
909 |
+
" </button>\n",
|
910 |
+
"\n",
|
911 |
+
"<style>\n",
|
912 |
+
" .colab-df-quickchart {\n",
|
913 |
+
" --bg-color: #E8F0FE;\n",
|
914 |
+
" --fill-color: #1967D2;\n",
|
915 |
+
" --hover-bg-color: #E2EBFA;\n",
|
916 |
+
" --hover-fill-color: #174EA6;\n",
|
917 |
+
" --disabled-fill-color: #AAA;\n",
|
918 |
+
" --disabled-bg-color: #DDD;\n",
|
919 |
+
" }\n",
|
920 |
+
"\n",
|
921 |
+
" [theme=dark] .colab-df-quickchart {\n",
|
922 |
+
" --bg-color: #3B4455;\n",
|
923 |
+
" --fill-color: #D2E3FC;\n",
|
924 |
+
" --hover-bg-color: #434B5C;\n",
|
925 |
+
" --hover-fill-color: #FFFFFF;\n",
|
926 |
+
" --disabled-bg-color: #3B4455;\n",
|
927 |
+
" --disabled-fill-color: #666;\n",
|
928 |
+
" }\n",
|
929 |
+
"\n",
|
930 |
+
" .colab-df-quickchart {\n",
|
931 |
+
" background-color: var(--bg-color);\n",
|
932 |
+
" border: none;\n",
|
933 |
+
" border-radius: 50%;\n",
|
934 |
+
" cursor: pointer;\n",
|
935 |
+
" display: none;\n",
|
936 |
+
" fill: var(--fill-color);\n",
|
937 |
+
" height: 32px;\n",
|
938 |
+
" padding: 0;\n",
|
939 |
+
" width: 32px;\n",
|
940 |
+
" }\n",
|
941 |
+
"\n",
|
942 |
+
" .colab-df-quickchart:hover {\n",
|
943 |
+
" background-color: var(--hover-bg-color);\n",
|
944 |
+
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
|
945 |
+
" fill: var(--button-hover-fill-color);\n",
|
946 |
+
" }\n",
|
947 |
+
"\n",
|
948 |
+
" .colab-df-quickchart-complete:disabled,\n",
|
949 |
+
" .colab-df-quickchart-complete:disabled:hover {\n",
|
950 |
+
" background-color: var(--disabled-bg-color);\n",
|
951 |
+
" fill: var(--disabled-fill-color);\n",
|
952 |
+
" box-shadow: none;\n",
|
953 |
+
" }\n",
|
954 |
+
"\n",
|
955 |
+
" .colab-df-spinner {\n",
|
956 |
+
" border: 2px solid var(--fill-color);\n",
|
957 |
+
" border-color: transparent;\n",
|
958 |
+
" border-bottom-color: var(--fill-color);\n",
|
959 |
+
" animation:\n",
|
960 |
+
" spin 1s steps(1) infinite;\n",
|
961 |
+
" }\n",
|
962 |
+
"\n",
|
963 |
+
" @keyframes spin {\n",
|
964 |
+
" 0% {\n",
|
965 |
+
" border-color: transparent;\n",
|
966 |
+
" border-bottom-color: var(--fill-color);\n",
|
967 |
+
" border-left-color: var(--fill-color);\n",
|
968 |
+
" }\n",
|
969 |
+
" 20% {\n",
|
970 |
+
" border-color: transparent;\n",
|
971 |
+
" border-left-color: var(--fill-color);\n",
|
972 |
+
" border-top-color: var(--fill-color);\n",
|
973 |
+
" }\n",
|
974 |
+
" 30% {\n",
|
975 |
+
" border-color: transparent;\n",
|
976 |
+
" border-left-color: var(--fill-color);\n",
|
977 |
+
" border-top-color: var(--fill-color);\n",
|
978 |
+
" border-right-color: var(--fill-color);\n",
|
979 |
+
" }\n",
|
980 |
+
" 40% {\n",
|
981 |
+
" border-color: transparent;\n",
|
982 |
+
" border-right-color: var(--fill-color);\n",
|
983 |
+
" border-top-color: var(--fill-color);\n",
|
984 |
+
" }\n",
|
985 |
+
" 60% {\n",
|
986 |
+
" border-color: transparent;\n",
|
987 |
+
" border-right-color: var(--fill-color);\n",
|
988 |
+
" }\n",
|
989 |
+
" 80% {\n",
|
990 |
+
" border-color: transparent;\n",
|
991 |
+
" border-right-color: var(--fill-color);\n",
|
992 |
+
" border-bottom-color: var(--fill-color);\n",
|
993 |
+
" }\n",
|
994 |
+
" 90% {\n",
|
995 |
+
" border-color: transparent;\n",
|
996 |
+
" border-bottom-color: var(--fill-color);\n",
|
997 |
+
" }\n",
|
998 |
+
" }\n",
|
999 |
+
"</style>\n",
|
1000 |
+
"\n",
|
1001 |
+
" <script>\n",
|
1002 |
+
" async function quickchart(key) {\n",
|
1003 |
+
" const quickchartButtonEl =\n",
|
1004 |
+
" document.querySelector('#' + key + ' button');\n",
|
1005 |
+
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
|
1006 |
+
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
|
1007 |
+
" try {\n",
|
1008 |
+
" const charts = await google.colab.kernel.invokeFunction(\n",
|
1009 |
+
" 'suggestCharts', [key], {});\n",
|
1010 |
+
" } catch (error) {\n",
|
1011 |
+
" console.error('Error during call to suggestCharts:', error);\n",
|
1012 |
+
" }\n",
|
1013 |
+
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
|
1014 |
+
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
|
1015 |
+
" }\n",
|
1016 |
+
" (() => {\n",
|
1017 |
+
" let quickchartButtonEl =\n",
|
1018 |
+
" document.querySelector('#df-f84499d9-ca47-46ab-b03f-e1b46127dadb button');\n",
|
1019 |
+
" quickchartButtonEl.style.display =\n",
|
1020 |
+
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
|
1021 |
+
" })();\n",
|
1022 |
+
" </script>\n",
|
1023 |
+
"</div>\n",
|
1024 |
+
"\n",
|
1025 |
+
" </div>\n",
|
1026 |
+
" </div>\n"
|
1027 |
+
],
|
1028 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
1029 |
+
"type": "dataframe",
|
1030 |
+
"variable_name": "df",
|
1031 |
+
"summary": "{\n \"name\": \"df\",\n \"rows\": 804,\n \"fields\": [\n {\n \"column\": \"Price\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9884.852800898008,\n \"min\": 8638.930895260657,\n \"max\": 70755.46671654288,\n \"num_unique_values\": 798,\n \"samples\": [\n 28432.824212532152,\n 24852.495280683135,\n 22661.048485078372\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Mileage\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 8196,\n \"min\": 266,\n \"max\": 50387,\n \"num_unique_values\": 791,\n \"samples\": [\n 21386,\n 29649,\n 29368\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Make\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 6,\n \"samples\": [\n \"Buick\",\n \"Cadillac\",\n \"Saturn\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Model\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 32,\n \"samples\": [\n \"9-2X AWD\",\n \"Impala\",\n \"Vibe\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Trim\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 47,\n \"samples\": [\n \"GXP Sedan 4D\",\n \"Aero Sedan 4D\",\n \"SS Coupe 2D\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Type\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"Convertible\",\n \"Wagon\",\n \"Hatchback\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cylinder\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 4,\n \"max\": 8,\n \"num_unique_values\": 3,\n \"samples\": [\n 6,\n 8,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Liter\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.1055619585094583,\n \"min\": 1.6,\n \"max\": 6.0,\n \"num_unique_values\": 16,\n \"samples\": [\n 3.1,\n 3.6,\n 4.6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Doors\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 2,\n \"max\": 4,\n \"num_unique_values\": 2,\n \"samples\": [\n 2,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Cruise\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sound\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Leather\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
|
1032 |
+
}
|
1033 |
+
},
|
1034 |
+
"metadata": {},
|
1035 |
+
"execution_count": 11
|
1036 |
+
}
|
1037 |
+
]
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"cell_type": "markdown",
|
1041 |
+
"source": [
|
1042 |
+
"Veri setinin ilk 5 satΔ±rΔ±nΔ± getirir ve verinin yapΔ±sΔ± hakkΔ±nda ΓΆn bilgi verir."
|
1043 |
+
],
|
1044 |
+
"metadata": {
|
1045 |
+
"id": "0jgxLWZEqQi1"
|
1046 |
+
}
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"cell_type": "code",
|
1050 |
+
"source": [
|
1051 |
+
"df.shape"
|
1052 |
+
],
|
1053 |
+
"metadata": {
|
1054 |
+
"colab": {
|
1055 |
+
"base_uri": "https://localhost:8080/"
|
1056 |
+
},
|
1057 |
+
"id": "-SjR6JBUqVQC",
|
1058 |
+
"outputId": "c19b8e18-355d-4f69-a1af-3e939fa981a6"
|
1059 |
+
},
|
1060 |
+
"execution_count": 12,
|
1061 |
+
"outputs": [
|
1062 |
+
{
|
1063 |
+
"output_type": "execute_result",
|
1064 |
+
"data": {
|
1065 |
+
"text/plain": [
|
1066 |
+
"(804, 12)"
|
1067 |
+
]
|
1068 |
+
},
|
1069 |
+
"metadata": {},
|
1070 |
+
"execution_count": 12
|
1071 |
+
}
|
1072 |
+
]
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"cell_type": "markdown",
|
1076 |
+
"source": [
|
1077 |
+
"Veri setinin kaΓ§ satΔ±r ve sΓΌtundan oluΕtuΔunu gΓΆsterir.\n",
|
1078 |
+
"\n"
|
1079 |
+
],
|
1080 |
+
"metadata": {
|
1081 |
+
"id": "TcvqOd2kqa7a"
|
1082 |
+
}
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"cell_type": "code",
|
1086 |
+
"source": [
|
1087 |
+
"X=df.drop('Price',axis=1)\n",
|
1088 |
+
"y=df['Price']"
|
1089 |
+
],
|
1090 |
+
"metadata": {
|
1091 |
+
"id": "vTLh077kqfni"
|
1092 |
+
},
|
1093 |
+
"execution_count": 13,
|
1094 |
+
"outputs": []
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"cell_type": "markdown",
|
1098 |
+
"source": [
|
1099 |
+
"Fiyat sΓΌtunuyla veri ΓΆn iΕleme baΕladΔ±."
|
1100 |
+
],
|
1101 |
+
"metadata": {
|
1102 |
+
"id": "rsqvPvJ5q1rI"
|
1103 |
+
}
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"cell_type": "code",
|
1107 |
+
"source": [
|
1108 |
+
"X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)"
|
1109 |
+
],
|
1110 |
+
"metadata": {
|
1111 |
+
"id": "RJGA1qKTsJST"
|
1112 |
+
},
|
1113 |
+
"execution_count": 14,
|
1114 |
+
"outputs": []
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"cell_type": "code",
|
1118 |
+
"source": [
|
1119 |
+
"preprocess=ColumnTransformer(\n",
|
1120 |
+
" transformers=[\n",
|
1121 |
+
" ('num',StandardScaler(),['Mileage', 'Cylinder','Liter','Doors']),\n",
|
1122 |
+
" ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])\n",
|
1123 |
+
" ]\n",
|
1124 |
+
")"
|
1125 |
+
],
|
1126 |
+
"metadata": {
|
1127 |
+
"id": "wSwPfUZhshha"
|
1128 |
+
},
|
1129 |
+
"execution_count": 15,
|
1130 |
+
"outputs": []
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"cell_type": "code",
|
1134 |
+
"source": [
|
1135 |
+
"cars_model= LinearRegression()"
|
1136 |
+
],
|
1137 |
+
"metadata": {
|
1138 |
+
"id": "YdOchgVqtvLc"
|
1139 |
+
},
|
1140 |
+
"execution_count": 16,
|
1141 |
+
"outputs": []
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"cell_type": "code",
|
1145 |
+
"source": [
|
1146 |
+
"pipe=Pipeline(steps=[('preprocessor',preprocess),('model',cars_model)])"
|
1147 |
+
],
|
1148 |
+
"metadata": {
|
1149 |
+
"id": "-tpAChVrv8th"
|
1150 |
+
},
|
1151 |
+
"execution_count": 18,
|
1152 |
+
"outputs": []
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"cell_type": "markdown",
|
1156 |
+
"source": [
|
1157 |
+
"Pipeline tanΔ±mlandΔ±"
|
1158 |
+
],
|
1159 |
+
"metadata": {
|
1160 |
+
"id": "15e56QlVwC-q"
|
1161 |
+
}
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"cell_type": "code",
|
1165 |
+
"source": [
|
1166 |
+
"pipe.fit(X_train,y_train)"
|
1167 |
+
],
|
1168 |
+
"metadata": {
|
1169 |
+
"colab": {
|
1170 |
+
"base_uri": "https://localhost:8080/",
|
1171 |
+
"height": 191
|
1172 |
+
},
|
1173 |
+
"id": "f0TO4rAEwOZG",
|
1174 |
+
"outputId": "29cb6d66-f9ce-4b0a-d76a-443bc2523929"
|
1175 |
+
},
|
1176 |
+
"execution_count": 19,
|
1177 |
+
"outputs": [
|
1178 |
+
{
|
1179 |
+
"output_type": "execute_result",
|
1180 |
+
"data": {
|
1181 |
+
"text/plain": [
|
1182 |
+
"Pipeline(steps=[('preprocessor',\n",
|
1183 |
+
" ColumnTransformer(transformers=[('num', StandardScaler(),\n",
|
1184 |
+
" ['Mileage', 'Cylinder',\n",
|
1185 |
+
" 'Liter', 'Doors']),\n",
|
1186 |
+
" ('cat', OneHotEncoder(),\n",
|
1187 |
+
" ['Make', 'Model', 'Trim',\n",
|
1188 |
+
" 'Type'])])),\n",
|
1189 |
+
" ('model', LinearRegression())])"
|
1190 |
+
],
|
1191 |
+
"text/html": [
|
1192 |
+
"<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"βΈ\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"βΎ\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('preprocessor',\n",
|
1193 |
+
" ColumnTransformer(transformers=[('num', StandardScaler(),\n",
|
1194 |
+
" ['Mileage', 'Cylinder',\n",
|
1195 |
+
" 'Liter', 'Doors']),\n",
|
1196 |
+
" ('cat', OneHotEncoder(),\n",
|
1197 |
+
" ['Make', 'Model', 'Trim',\n",
|
1198 |
+
" 'Type'])])),\n",
|
1199 |
+
" ('model', LinearRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('preprocessor',\n",
|
1200 |
+
" ColumnTransformer(transformers=[('num', StandardScaler(),\n",
|
1201 |
+
" ['Mileage', 'Cylinder',\n",
|
1202 |
+
" 'Liter', 'Doors']),\n",
|
1203 |
+
" ('cat', OneHotEncoder(),\n",
|
1204 |
+
" ['Make', 'Model', 'Trim',\n",
|
1205 |
+
" 'Type'])])),\n",
|
1206 |
+
" ('model', LinearRegression())])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">preprocessor: ColumnTransformer</label><div class=\"sk-toggleable__content\"><pre>ColumnTransformer(transformers=[('num', StandardScaler(),\n",
|
1207 |
+
" ['Mileage', 'Cylinder', 'Liter', 'Doors']),\n",
|
1208 |
+
" ('cat', OneHotEncoder(),\n",
|
1209 |
+
" ['Make', 'Model', 'Trim', 'Type'])])</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">num</label><div class=\"sk-toggleable__content\"><pre>['Mileage', 'Cylinder', 'Liter', 'Doors']</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">cat</label><div class=\"sk-toggleable__content\"><pre>['Make', 'Model', 'Trim', 'Type']</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">OneHotEncoder</label><div class=\"sk-toggleable__content\"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-7\" type=\"checkbox\" ><label for=\"sk-estimator-id-7\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">LinearRegression</label><div class=\"sk-toggleable__content\"><pre>LinearRegression()</pre></div></div></div></div></div></div></div>"
|
1210 |
+
]
|
1211 |
+
},
|
1212 |
+
"metadata": {},
|
1213 |
+
"execution_count": 19
|
1214 |
+
}
|
1215 |
+
]
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"cell_type": "code",
|
1219 |
+
"source": [
|
1220 |
+
"y_pred=pipe.predict(X_test)\n",
|
1221 |
+
"print('RMSE',mean_squared_error(y_test,y_pred)**0.5)\n",
|
1222 |
+
"print('R2',r2_score(y_test,y_pred))"
|
1223 |
+
],
|
1224 |
+
"metadata": {
|
1225 |
+
"colab": {
|
1226 |
+
"base_uri": "https://localhost:8080/"
|
1227 |
+
},
|
1228 |
+
"id": "41ntEyZOwpMG",
|
1229 |
+
"outputId": "719ead68-c3a8-458e-d09d-0f36d3138d95"
|
1230 |
+
},
|
1231 |
+
"execution_count": 20,
|
1232 |
+
"outputs": [
|
1233 |
+
{
|
1234 |
+
"output_type": "stream",
|
1235 |
+
"name": "stdout",
|
1236 |
+
"text": [
|
1237 |
+
"RMSE 835.1007875600316\n",
|
1238 |
+
"R2 0.9912072813963753\n"
|
1239 |
+
]
|
1240 |
+
}
|
1241 |
+
]
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"cell_type": "markdown",
|
1245 |
+
"source": [
|
1246 |
+
"Skorlar kaydedildi."
|
1247 |
+
],
|
1248 |
+
"metadata": {
|
1249 |
+
"id": "Vc9d9Ch4xEXe"
|
1250 |
+
}
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"cell_type": "code",
|
1254 |
+
"source": [
|
1255 |
+
"pipe.fit(X,y)"
|
1256 |
+
],
|
1257 |
+
"metadata": {
|
1258 |
+
"colab": {
|
1259 |
+
"base_uri": "https://localhost:8080/",
|
1260 |
+
"height": 191
|
1261 |
+
},
|
1262 |
+
"id": "-i3lnaj_xMNW",
|
1263 |
+
"outputId": "b82306d3-50b0-4cad-b7a9-5128891be4c2"
|
1264 |
+
},
|
1265 |
+
"execution_count": 21,
|
1266 |
+
"outputs": [
|
1267 |
+
{
|
1268 |
+
"output_type": "execute_result",
|
1269 |
+
"data": {
|
1270 |
+
"text/plain": [
|
1271 |
+
"Pipeline(steps=[('preprocessor',\n",
|
1272 |
+
" ColumnTransformer(transformers=[('num', StandardScaler(),\n",
|
1273 |
+
" ['Mileage', 'Cylinder',\n",
|
1274 |
+
" 'Liter', 'Doors']),\n",
|
1275 |
+
" ('cat', OneHotEncoder(),\n",
|
1276 |
+
" ['Make', 'Model', 'Trim',\n",
|
1277 |
+
" 'Type'])])),\n",
|
1278 |
+
" ('model', LinearRegression())])"
|
1279 |
+
],
|
1280 |
+
"text/html": [
|
1281 |
+
"<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"βΈ\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"βΎ\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('preprocessor',\n",
|
1282 |
+
" ColumnTransformer(transformers=[('num', StandardScaler(),\n",
|
1283 |
+
" ['Mileage', 'Cylinder',\n",
|
1284 |
+
" 'Liter', 'Doors']),\n",
|
1285 |
+
" ('cat', OneHotEncoder(),\n",
|
1286 |
+
" ['Make', 'Model', 'Trim',\n",
|
1287 |
+
" 'Type'])])),\n",
|
1288 |
+
" ('model', LinearRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-8\" type=\"checkbox\" ><label for=\"sk-estimator-id-8\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[('preprocessor',\n",
|
1289 |
+
" ColumnTransformer(transformers=[('num', StandardScaler(),\n",
|
1290 |
+
" ['Mileage', 'Cylinder',\n",
|
1291 |
+
" 'Liter', 'Doors']),\n",
|
1292 |
+
" ('cat', OneHotEncoder(),\n",
|
1293 |
+
" ['Make', 'Model', 'Trim',\n",
|
1294 |
+
" 'Type'])])),\n",
|
1295 |
+
" ('model', LinearRegression())])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-9\" type=\"checkbox\" ><label for=\"sk-estimator-id-9\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">preprocessor: ColumnTransformer</label><div class=\"sk-toggleable__content\"><pre>ColumnTransformer(transformers=[('num', StandardScaler(),\n",
|
1296 |
+
" ['Mileage', 'Cylinder', 'Liter', 'Doors']),\n",
|
1297 |
+
" ('cat', OneHotEncoder(),\n",
|
1298 |
+
" ['Make', 'Model', 'Trim', 'Type'])])</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-10\" type=\"checkbox\" ><label for=\"sk-estimator-id-10\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">num</label><div class=\"sk-toggleable__content\"><pre>['Mileage', 'Cylinder', 'Liter', 'Doors']</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-11\" type=\"checkbox\" ><label for=\"sk-estimator-id-11\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">StandardScaler</label><div class=\"sk-toggleable__content\"><pre>StandardScaler()</pre></div></div></div></div></div></div><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-12\" type=\"checkbox\" ><label for=\"sk-estimator-id-12\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">cat</label><div class=\"sk-toggleable__content\"><pre>['Make', 'Model', 'Trim', 'Type']</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-13\" type=\"checkbox\" ><label for=\"sk-estimator-id-13\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">OneHotEncoder</label><div class=\"sk-toggleable__content\"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-14\" type=\"checkbox\" ><label for=\"sk-estimator-id-14\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">LinearRegression</label><div class=\"sk-toggleable__content\"><pre>LinearRegression()</pre></div></div></div></div></div></div></div>"
|
1299 |
+
]
|
1300 |
+
},
|
1301 |
+
"metadata": {},
|
1302 |
+
"execution_count": 21
|
1303 |
+
}
|
1304 |
+
]
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"cell_type": "markdown",
|
1308 |
+
"source": [
|
1309 |
+
"Veri setiyle tekrar eΔitim yapΔ±ldΔ±."
|
1310 |
+
],
|
1311 |
+
"metadata": {
|
1312 |
+
"id": "bEKsz1pExU7o"
|
1313 |
+
}
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"cell_type": "code",
|
1317 |
+
"source": [
|
1318 |
+
"!pip install streamlit"
|
1319 |
+
],
|
1320 |
+
"metadata": {
|
1321 |
+
"colab": {
|
1322 |
+
"base_uri": "https://localhost:8080/"
|
1323 |
+
},
|
1324 |
+
"id": "hP5OsYaZxa5I",
|
1325 |
+
"outputId": "d32a7d22-551d-40b2-fdab-93c2f666dd44"
|
1326 |
+
},
|
1327 |
+
"execution_count": 22,
|
1328 |
+
"outputs": [
|
1329 |
+
{
|
1330 |
+
"output_type": "stream",
|
1331 |
+
"name": "stdout",
|
1332 |
+
"text": [
|
1333 |
+
"Collecting streamlit\n",
|
1334 |
+
" Downloading streamlit-1.35.0-py2.py3-none-any.whl (8.6 MB)\n",
|
1335 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m8.6/8.6 MB\u001b[0m \u001b[31m46.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1336 |
+
"\u001b[?25hRequirement already satisfied: altair<6,>=4.0 in /usr/local/lib/python3.10/dist-packages (from streamlit) (4.2.2)\n",
|
1337 |
+
"Requirement already satisfied: blinker<2,>=1.0.0 in /usr/lib/python3/dist-packages (from streamlit) (1.4)\n",
|
1338 |
+
"Requirement already satisfied: cachetools<6,>=4.0 in /usr/local/lib/python3.10/dist-packages (from streamlit) (5.3.3)\n",
|
1339 |
+
"Requirement already satisfied: click<9,>=7.0 in /usr/local/lib/python3.10/dist-packages (from streamlit) (8.1.7)\n",
|
1340 |
+
"Requirement already satisfied: numpy<2,>=1.19.3 in /usr/local/lib/python3.10/dist-packages (from streamlit) (1.25.2)\n",
|
1341 |
+
"Requirement already satisfied: packaging<25,>=16.8 in /usr/local/lib/python3.10/dist-packages (from streamlit) (24.1)\n",
|
1342 |
+
"Requirement already satisfied: pandas<3,>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from streamlit) (2.0.3)\n",
|
1343 |
+
"Requirement already satisfied: pillow<11,>=7.1.0 in /usr/local/lib/python3.10/dist-packages (from streamlit) (9.4.0)\n",
|
1344 |
+
"Requirement already satisfied: protobuf<5,>=3.20 in /usr/local/lib/python3.10/dist-packages (from streamlit) (3.20.3)\n",
|
1345 |
+
"Requirement already satisfied: pyarrow>=7.0 in /usr/local/lib/python3.10/dist-packages (from streamlit) (14.0.2)\n",
|
1346 |
+
"Requirement already satisfied: requests<3,>=2.27 in /usr/local/lib/python3.10/dist-packages (from streamlit) (2.31.0)\n",
|
1347 |
+
"Requirement already satisfied: rich<14,>=10.14.0 in /usr/local/lib/python3.10/dist-packages (from streamlit) (13.7.1)\n",
|
1348 |
+
"Requirement already satisfied: tenacity<9,>=8.1.0 in /usr/local/lib/python3.10/dist-packages (from streamlit) (8.3.0)\n",
|
1349 |
+
"Requirement already satisfied: toml<2,>=0.10.1 in /usr/local/lib/python3.10/dist-packages (from streamlit) (0.10.2)\n",
|
1350 |
+
"Requirement already satisfied: typing-extensions<5,>=4.3.0 in /usr/local/lib/python3.10/dist-packages (from streamlit) (4.12.2)\n",
|
1351 |
+
"Collecting gitpython!=3.1.19,<4,>=3.0.7 (from streamlit)\n",
|
1352 |
+
" Downloading GitPython-3.1.43-py3-none-any.whl (207 kB)\n",
|
1353 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m207.3/207.3 kB\u001b[0m \u001b[31m26.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1354 |
+
"\u001b[?25hCollecting pydeck<1,>=0.8.0b4 (from streamlit)\n",
|
1355 |
+
" Downloading pydeck-0.9.1-py2.py3-none-any.whl (6.9 MB)\n",
|
1356 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m6.9/6.9 MB\u001b[0m \u001b[31m88.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1357 |
+
"\u001b[?25hRequirement already satisfied: tornado<7,>=6.0.3 in /usr/local/lib/python3.10/dist-packages (from streamlit) (6.3.3)\n",
|
1358 |
+
"Collecting watchdog>=2.1.5 (from streamlit)\n",
|
1359 |
+
" Downloading watchdog-4.0.1-py3-none-manylinux2014_x86_64.whl (83 kB)\n",
|
1360 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m83.0/83.0 kB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1361 |
+
"\u001b[?25hRequirement already satisfied: entrypoints in /usr/local/lib/python3.10/dist-packages (from altair<6,>=4.0->streamlit) (0.4)\n",
|
1362 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from altair<6,>=4.0->streamlit) (3.1.4)\n",
|
1363 |
+
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.10/dist-packages (from altair<6,>=4.0->streamlit) (4.19.2)\n",
|
1364 |
+
"Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from altair<6,>=4.0->streamlit) (0.12.1)\n",
|
1365 |
+
"Collecting gitdb<5,>=4.0.1 (from gitpython!=3.1.19,<4,>=3.0.7->streamlit)\n",
|
1366 |
+
" Downloading gitdb-4.0.11-py3-none-any.whl (62 kB)\n",
|
1367 |
+
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m62.7/62.7 kB\u001b[0m \u001b[31m8.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1368 |
+
"\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas<3,>=1.3.0->streamlit) (2.8.2)\n",
|
1369 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3,>=1.3.0->streamlit) (2023.4)\n",
|
1370 |
+
"Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3,>=1.3.0->streamlit) (2024.1)\n",
|
1371 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.27->streamlit) (3.3.2)\n",
|
1372 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.27->streamlit) (3.7)\n",
|
1373 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.27->streamlit) (2.0.7)\n",
|
1374 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.27->streamlit) (2024.6.2)\n",
|
1375 |
+
"Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich<14,>=10.14.0->streamlit) (3.0.0)\n",
|
1376 |
+
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.10/dist-packages (from rich<14,>=10.14.0->streamlit) (2.16.1)\n",
|
1377 |
+
"Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->gitpython!=3.1.19,<4,>=3.0.7->streamlit)\n",
|
1378 |
+
" Downloading smmap-5.0.1-py3-none-any.whl (24 kB)\n",
|
1379 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->altair<6,>=4.0->streamlit) (2.1.5)\n",
|
1380 |
+
"Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (23.2.0)\n",
|
1381 |
+
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (2023.12.1)\n",
|
1382 |
+
"Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (0.35.1)\n",
|
1383 |
+
"Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6,>=4.0->streamlit) (0.18.1)\n",
|
1384 |
+
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich<14,>=10.14.0->streamlit) (0.1.2)\n",
|
1385 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas<3,>=1.3.0->streamlit) (1.16.0)\n",
|
1386 |
+
"Installing collected packages: watchdog, smmap, pydeck, gitdb, gitpython, streamlit\n",
|
1387 |
+
"Successfully installed gitdb-4.0.11 gitpython-3.1.43 pydeck-0.9.1 smmap-5.0.1 streamlit-1.35.0 watchdog-4.0.1\n"
|
1388 |
+
]
|
1389 |
+
}
|
1390 |
+
]
|
1391 |
+
},
|
1392 |
+
{
|
1393 |
+
"cell_type": "code",
|
1394 |
+
"source": [
|
1395 |
+
"import streamlit as st\n",
|
1396 |
+
"\n",
|
1397 |
+
"def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):\n",
|
1398 |
+
" input_data=pd.DataFrame({'Make':[make],\n",
|
1399 |
+
" 'Model':[model],\n",
|
1400 |
+
" 'Trim':[trim],\n",
|
1401 |
+
" 'Mileage':[mileage],\n",
|
1402 |
+
" 'Type':[car_type],\n",
|
1403 |
+
" 'Cylinder':[cylinder],\n",
|
1404 |
+
" 'Liter':[liter],\n",
|
1405 |
+
" 'Doors':[doors],\n",
|
1406 |
+
" 'Cruise':[cruise],\n",
|
1407 |
+
" 'Sound':[sound],\n",
|
1408 |
+
" 'Leather':[leather]})\n",
|
1409 |
+
" prediction=pipe.predict(input_data)[0]\n",
|
1410 |
+
" return prediction\n",
|
1411 |
+
"st.title(\"II. El Araba FiyatΔ± Tahmin:red_car: @drmurataltun\")\n",
|
1412 |
+
"st.write('Arabanın âzelliklerini seçiniz')\n",
|
1413 |
+
"make=st.selectbox('Marka',df['Make'].unique())\n",
|
1414 |
+
"model=st.selectbox('Model',df[df['Make']==make]['Model'].unique())\n",
|
1415 |
+
"trim=st.selectbox('Trim',df[(df['Make']==make) &(df['Model']==model)]['Trim'].unique())\n",
|
1416 |
+
"mileage=st.number_input('Kilometre',100,200000)\n",
|
1417 |
+
"car_type=st.selectbox('Araç Tipi',df[(df['Make']==make) &(df['Model']==model)&(df['Trim']==trim)]['Type'].unique())\n",
|
1418 |
+
"cylinder=st.selectbox('Cylinder',df['Cylinder'].unique())\n",
|
1419 |
+
"liter=st.number_input('YakΔ±t hacmi',1,10)\n",
|
1420 |
+
"doors=st.selectbox('KapΔ± sayΔ±sΔ±',df['Doors'].unique())\n",
|
1421 |
+
"cruise=st.radio('HΔ±z Sbt.',[True,False])\n",
|
1422 |
+
"sound=st.radio('Ses Sis.',[True,False])\n",
|
1423 |
+
"leather=st.radio('Deri dΓΆΕeme.',[True,False])\n",
|
1424 |
+
"if st.button('Tahmin'):\n",
|
1425 |
+
" pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)\n",
|
1426 |
+
" st.write('Fiyat:$', round(pred[0],2))"
|
1427 |
+
],
|
1428 |
+
"metadata": {
|
1429 |
+
"colab": {
|
1430 |
+
"base_uri": "https://localhost:8080/"
|
1431 |
+
},
|
1432 |
+
"id": "xC3w9NK_3Lmh",
|
1433 |
+
"outputId": "f232a770-f806-4362-dce1-ea2ea73e79cf"
|
1434 |
+
},
|
1435 |
+
"execution_count": 23,
|
1436 |
+
"outputs": [
|
1437 |
+
{
|
1438 |
+
"output_type": "stream",
|
1439 |
+
"name": "stderr",
|
1440 |
+
"text": [
|
1441 |
+
"2024-06-18 15:00:30.503 \n",
|
1442 |
+
" \u001b[33m\u001b[1mWarning:\u001b[0m to view this Streamlit app on a browser, run it with the following\n",
|
1443 |
+
" command:\n",
|
1444 |
+
"\n",
|
1445 |
+
" streamlit run /usr/local/lib/python3.10/dist-packages/colab_kernel_launcher.py [ARGUMENTS]\n",
|
1446 |
+
"2024-06-18 15:00:30.507 Session state does not function when running a script without `streamlit run`\n"
|
1447 |
+
]
|
1448 |
+
}
|
1449 |
+
]
|
1450 |
+
}
|
1451 |
+
]
|
1452 |
+
}
|
cars.xls
ADDED
Binary file (142 kB). View file
|
|