Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
Python 3.10.5 (tags/v3.10.5:f377153, Jun 6 2022, 16:14:13) [MSC v.1929 64 bit (AMD64)] on win32
|
2 |
-
Type "help", "copyright", "credits" or "license()" for more information.
|
3 |
-
#!/usr/bin/env python
|
4 |
-
# coding: utf-8
|
5 |
-
|
6 |
-
# # Araba Fiyatı Tahmin Eden Model ve Deployment
|
7 |
-
|
8 |
-
|
9 |
-
#import libraries
|
10 |
-
import pandas as pd
|
11 |
-
from sklearn.model_selection import train_test_split
|
12 |
-
from sklearn.linear_model import LinearRegression
|
13 |
-
from sklearn.metrics import r2_score,mean_squared_error
|
14 |
-
from sklearn.pipeline import Pipeline
|
15 |
-
from sklearn.compose import ColumnTransformer
|
16 |
-
from sklearn.preprocessing import StandardScaler,OneHotEncoder
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
#Load data
|
21 |
-
df=pd.read_excel('cars.xls')
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
X=df.drop('Price',axis=1)
|
30 |
-
y=df[['Price']]
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
X_train,X_test,y_train,y_test=train_test_split(X,y,
|
35 |
-
test_size=0.2,
|
36 |
-
random_state=42)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
preproccer=ColumnTransformer(transformers=[('num',StandardScaler(),
|
42 |
-
['Mileage','Cylinder','Liter','Doors']),
|
43 |
-
('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
model=LinearRegression()
|
49 |
-
pipe=Pipeline(steps=[('preprocessor',preproccer),
|
50 |
-
('model',model)])
|
51 |
-
pipe.fit(X_train,y_train)
|
52 |
-
y_pred=pipe.predict(X_test)
|
53 |
-
mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
|
54 |
-
|
55 |
-
import streamlit as st
|
56 |
-
def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
|
57 |
-
input_data=pd.DataFrame({
|
58 |
-
'Make':[make],
|
59 |
-
'Model':[model],
|
60 |
-
'Trim':[trim],
|
61 |
-
'Mileage':[mileage],
|
62 |
-
'Type':[car_type],
|
63 |
-
'Car_type':[car_type],
|
64 |
-
'Cylinder':[cylinder],
|
65 |
-
'Liter':[liter],
|
66 |
-
'Doors':[doors],
|
67 |
-
'Cruise':[cruise],
|
68 |
-
'Sound':[sound],
|
69 |
-
'Leather':[leather]
|
70 |
-
})
|
71 |
-
prediction=pipe.predict(input_data)[0]
|
72 |
-
return prediction
|
73 |
-
st.title("Araba Fiyatı Tahmin :red_car: @drmurataltun")
|
74 |
-
st.write("Arabanın özelliklerini seçin")
|
75 |
-
make=st.selectbox("Marka",df['Make'].unique())
|
76 |
-
model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
|
77 |
-
trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
|
78 |
-
mileage=st.number_input("Kilometre",200,60000)
|
79 |
-
car_type=st.selectbox("Tipi",df[(df['Make']==make) & (df['Model']==model) & (df['Trim']==trim )]['Type'].unique())
|
80 |
-
cylinder=st.selectbox("Silindir",df['Cylinder'].unique())
|
81 |
-
liter=st.number_input("Liter",1,6)
|
82 |
-
doors=st.selectbox("Kapı",df['Doors'].unique())
|
83 |
-
cruise=st.radio("Hız S.",[True,False])
|
84 |
-
sound=st.radio("Ses Sistemi",[True,False])
|
85 |
-
leather=st.radio("Deri döşeme",[True,False])
|
86 |
-
if st.button("Tahmin"):
|
87 |
-
pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
|
88 |
-
|
89 |
-
st.write("11062024:Predicted Price :red_car: $",round(pred[0],2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|