|
import os |
|
|
|
|
|
|
|
|
|
|
|
import cv2 |
|
import io |
|
import gc |
|
import yaml |
|
import argparse |
|
import torch |
|
import torchvision |
|
import diffusers |
|
from diffusers import StableDiffusionPipeline, AutoencoderKL, DDPMScheduler, ControlNetModel |
|
import gradio as gr |
|
from enum import Enum |
|
import imageio.v2 as imageio |
|
|
|
from src.utils import * |
|
from src.keyframe_selection import get_keyframe_ind |
|
from src.diffusion_hacked import apply_FRESCO_attn, apply_FRESCO_opt, disable_FRESCO_opt |
|
from src.diffusion_hacked import get_flow_and_interframe_paras, get_intraframe_paras |
|
from src.pipe_FRESCO import inference |
|
from src.free_lunch_utils import apply_freeu |
|
|
|
import sys |
|
sys.path.append("./src/ebsynth/deps/gmflow/") |
|
sys.path.append("./src/EGNet/") |
|
sys.path.append("./src/ControlNet/") |
|
|
|
from gmflow.gmflow import GMFlow |
|
from model import build_model |
|
from annotator.hed import HEDdetector |
|
from annotator.canny import CannyDetector |
|
from annotator.midas import MidasDetector |
|
|
|
|
|
def get_models(config): |
|
|
|
flow_model = GMFlow(feature_channels=128, |
|
num_scales=1, |
|
upsample_factor=8, |
|
num_head=1, |
|
attention_type='swin', |
|
ffn_dim_expansion=4, |
|
num_transformer_layers=6, |
|
).to('cuda') |
|
|
|
checkpoint = torch.load(config['gmflow_path'], map_location=lambda storage, loc: storage) |
|
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint |
|
flow_model.load_state_dict(weights, strict=False) |
|
flow_model.eval() |
|
|
|
|
|
sod_model = build_model('resnet') |
|
sod_model.load_state_dict(torch.load(config['sod_path'])) |
|
sod_model.to("cuda").eval() |
|
|
|
|
|
if config['controlnet_type'] not in ['hed', 'depth', 'canny']: |
|
config['controlnet_type'] = 'hed' |
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+config['controlnet_type'], |
|
torch_dtype=torch.float16) |
|
controlnet.to("cuda") |
|
if config['controlnet_type'] == 'depth': |
|
detector = MidasDetector() |
|
elif config['controlnet_type'] == 'canny': |
|
detector = CannyDetector() |
|
else: |
|
detector = HEDdetector() |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) |
|
pipe = StableDiffusionPipeline.from_pretrained(config['sd_path'], vae=vae, torch_dtype=torch.float16) |
|
pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config) |
|
pipe.to("cuda") |
|
pipe.scheduler.set_timesteps(config['num_inference_steps'], device=pipe._execution_device) |
|
|
|
frescoProc = apply_FRESCO_attn(pipe) |
|
frescoProc.controller.disable_controller() |
|
apply_FRESCO_opt(pipe) |
|
|
|
for param in flow_model.parameters(): |
|
param.requires_grad = False |
|
for param in sod_model.parameters(): |
|
param.requires_grad = False |
|
for param in controlnet.parameters(): |
|
param.requires_grad = False |
|
for param in pipe.unet.parameters(): |
|
param.requires_grad = False |
|
|
|
return pipe, frescoProc, controlnet, detector, flow_model, sod_model |
|
|
|
def apply_control(x, detector, control_type): |
|
if control_type == 'depth': |
|
detected_map, _ = detector(x) |
|
elif control_type == 'canny': |
|
detected_map = detector(x, 50, 100) |
|
else: |
|
detected_map = detector(x) |
|
return detected_map |
|
|
|
class ProcessingState(Enum): |
|
NULL = 0 |
|
KEY_IMGS = 1 |
|
|
|
class GlobalState: |
|
def __init__(self): |
|
config_path = 'config/config_dog.yaml' |
|
with open(config_path, "r") as f: |
|
config = yaml.safe_load(f) |
|
|
|
self.sd_model = config['sd_path'] |
|
self.control_type = config['controlnet_type'] |
|
self.processing_state = ProcessingState.NULL |
|
pipe, frescoProc, controlnet, detector, flow_model, sod_model = get_models(config) |
|
self.pipe = pipe |
|
self.frescoProc = frescoProc |
|
self.controlnet = controlnet |
|
self.detector = detector |
|
self.flow_model = flow_model |
|
self.sod_model = sod_model |
|
self.keys = [] |
|
|
|
def update_controlnet_model(self, control_type): |
|
if self.control_type == control_type: |
|
return |
|
self.control_type = control_type |
|
self.controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-"+control_type, |
|
torch_dtype=torch.float16) |
|
self.controlnet.to("cuda") |
|
if control_type == 'depth': |
|
self.detector = MidasDetector() |
|
elif control_type == 'canny': |
|
self.detector = CannyDetector() |
|
else: |
|
self.detector = HEDdetector() |
|
torch.cuda.empty_cache() |
|
for param in self.controlnet.parameters(): |
|
param.requires_grad = False |
|
|
|
def update_sd_model(self, sd_model): |
|
if self.sd_model == sd_model: |
|
return |
|
self.sd_model = sd_model |
|
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) |
|
self.pipe = StableDiffusionPipeline.from_pretrained(sd_model, vae=vae, torch_dtype=torch.float16) |
|
self.pipe.scheduler = DDPMScheduler.from_config(self.pipe.scheduler.config) |
|
self.pipe.to("cuda") |
|
self.frescoProc = apply_FRESCO_attn(self.pipe) |
|
self.frescoProc.controller.disable_controller() |
|
torch.cuda.empty_cache() |
|
for param in self.pipe.unet.parameters(): |
|
param.requires_grad = False |
|
|
|
@torch.no_grad() |
|
def process(*args): |
|
keypath = process1(*args) |
|
fullpath = process2(*args) |
|
return keypath, fullpath |
|
|
|
@torch.no_grad() |
|
def process1(input_path, prompt, sd_model, seed, image_resolution, control_strength, |
|
x0_strength, control_type, low_threshold, high_threshold, |
|
ddpm_steps, scale, a_prompt, n_prompt, |
|
frame_count, batch_size, mininterv, maxinterv, |
|
use_constraints, bg_smooth, use_poisson, max_process, |
|
b1, b2, s1, s2): |
|
global global_state |
|
global_state.update_controlnet_model(control_type) |
|
global_state.update_sd_model(sd_model) |
|
apply_freeu(global_state.pipe, b1=b1, b2=b2, s1=s1, s2=s2) |
|
|
|
filename = os.path.splitext(os.path.basename(input_path))[0] |
|
save_path = os.path.join('output', filename) |
|
device = global_state.pipe._execution_device |
|
guidance_scale = scale |
|
do_classifier_free_guidance = True |
|
global_state.pipe.scheduler.set_timesteps(ddpm_steps, device=device) |
|
timesteps = global_state.pipe.scheduler.timesteps |
|
cond_scale = [control_strength] * ddpm_steps |
|
dilate = Dilate(device=device) |
|
|
|
base_prompt = prompt |
|
video_cap = cv2.VideoCapture(input_path) |
|
frame_num = min(frame_count, int(video_cap.get(cv2.CAP_PROP_FRAME_COUNT))) |
|
fps = int(video_cap.get(cv2.CAP_PROP_FPS)) |
|
|
|
keys = get_keyframe_ind(input_path, frame_num, mininterv, maxinterv) |
|
if len(keys) < 3: |
|
raise gr.Error('Too few (%d) keyframes detected!'%(len(keys))) |
|
global_state.keys = keys |
|
fps = max(int(fps * len(keys) / frame_num), 1) |
|
os.makedirs(save_path, exist_ok=True) |
|
os.makedirs(os.path.join(save_path, 'keys'), exist_ok=True) |
|
os.makedirs(os.path.join(save_path, 'video'), exist_ok=True) |
|
|
|
sublists = [keys[i:i+batch_size-2] for i in range(2, len(keys), batch_size-2)] |
|
sublists[0].insert(0, keys[0]) |
|
sublists[0].insert(1, keys[1]) |
|
if len(sublists) > 1 and len(sublists[-1]) < 3: |
|
add_num = 3 - len(sublists[-1]) |
|
sublists[-1] = sublists[-2][-add_num:] + sublists[-1] |
|
sublists[-2] = sublists[-2][:-add_num] |
|
|
|
batch_ind = 0 |
|
propagation_mode = batch_ind > 0 |
|
imgs = [] |
|
record_latents = [] |
|
video_cap = cv2.VideoCapture(input_path) |
|
|
|
for i in range(frame_num): |
|
success, frame = video_cap.read() |
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
img = resize_image(frame, image_resolution) |
|
H, W, C = img.shape |
|
Image.fromarray(img).save(os.path.join(save_path, 'video/%04d.png'%(i))) |
|
if i not in sublists[batch_ind]: |
|
continue |
|
|
|
imgs += [img] |
|
if i != sublists[batch_ind][-1]: |
|
continue |
|
|
|
|
|
batch_size = len(imgs) |
|
n_prompts = [n_prompt] * len(imgs) |
|
prompts = [base_prompt + a_prompt] * len(sublists[batch_ind]) |
|
if propagation_mode: |
|
prompts = ref_prompt + prompts |
|
|
|
prompt_embeds = global_state.pipe._encode_prompt( |
|
prompts, |
|
device, |
|
1, |
|
do_classifier_free_guidance, |
|
n_prompts, |
|
) |
|
|
|
imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0) |
|
|
|
edges = torch.cat([numpy2tensor(apply_control(img, |
|
global_state.detector, control_type)[:, :, None]) for img in imgs], dim=0) |
|
edges = edges.repeat(1,3,1,1).cuda() * 0.5 + 0.5 |
|
edges = torch.cat([edges.to(global_state.pipe.unet.dtype)] * 2) |
|
|
|
if bg_smooth: |
|
saliency = get_saliency(imgs, global_state.sod_model, dilate) |
|
else: |
|
saliency = None |
|
|
|
|
|
flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(global_state.flow_model, imgs) |
|
correlation_matrix = get_intraframe_paras(global_state.pipe, imgs_torch, global_state.frescoProc, |
|
prompt_embeds, seed = seed) |
|
|
|
global_state.frescoProc.controller.disable_controller() |
|
if 'spatial-guided attention' in use_constraints: |
|
global_state.frescoProc.controller.enable_intraattn() |
|
if 'temporal-guided attention' in use_constraints: |
|
global_state.frescoProc.controller.enable_interattn(interattn_paras) |
|
if 'cross-frame attention' in use_constraints: |
|
global_state.frescoProc.controller.enable_cfattn(attn_mask) |
|
|
|
global_state.frescoProc.controller.enable_controller(interattn_paras=interattn_paras, attn_mask=attn_mask) |
|
optimize_temporal = True |
|
if 'temporal-guided optimization' not in use_constraints: |
|
correlation_matrix = [] |
|
if 'spatial-guided optimization' not in use_constraints: |
|
optimize_temporal = False |
|
apply_FRESCO_opt(global_state.pipe, steps = timesteps[:int(ddpm_steps*0.75)], |
|
flows = flows, occs = occs, correlation_matrix=correlation_matrix, |
|
saliency=saliency, optimize_temporal = optimize_temporal) |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
latents = inference(global_state.pipe, global_state.controlnet, global_state.frescoProc, |
|
imgs_torch, prompt_embeds, edges, timesteps, |
|
cond_scale, ddpm_steps, int(ddpm_steps*(1-x0_strength)), |
|
True, seed, guidance_scale, True, |
|
record_latents, propagation_mode, |
|
flows = flows, occs = occs, saliency=saliency, repeat_noise=True) |
|
|
|
with torch.no_grad(): |
|
image = global_state.pipe.vae.decode(latents / global_state.pipe.vae.config.scaling_factor, return_dict=False)[0] |
|
image = torch.clamp(image, -1 , 1) |
|
save_imgs = tensor2numpy(image) |
|
bias = 2 if propagation_mode else 0 |
|
for ind, num in enumerate(sublists[batch_ind]): |
|
Image.fromarray(save_imgs[ind+bias]).save(os.path.join(save_path, 'keys/%04d.png'%(num))) |
|
|
|
batch_ind += 1 |
|
|
|
ref_prompt= [prompts[0], prompts[-1]] |
|
imgs = [imgs[0], imgs[-1]] |
|
propagation_mode = batch_ind > 0 |
|
if batch_ind == len(sublists): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
break |
|
|
|
writer = imageio.get_writer(os.path.join(save_path, 'key.mp4'), fps=fps) |
|
file_list = sorted(os.listdir(os.path.join(save_path, 'keys'))) |
|
for file_name in file_list: |
|
if not (file_name.endswith('jpg') or file_name.endswith('png')): |
|
continue |
|
fn = os.path.join(os.path.join(save_path, 'keys'), file_name) |
|
curImg = imageio.imread(fn) |
|
writer.append_data(curImg) |
|
writer.close() |
|
|
|
global_state.processing_state = ProcessingState.KEY_IMGS |
|
return os.path.join(save_path, 'key.mp4') |
|
|
|
@torch.no_grad() |
|
def process2(input_path, prompt, sd_model, seed, image_resolution, control_strength, |
|
x0_strength, control_type, low_threshold, high_threshold, |
|
ddpm_steps, scale, a_prompt, n_prompt, |
|
frame_count, batch_size, mininterv, maxinterv, |
|
use_constraints, bg_smooth, use_poisson, max_process, |
|
b1, b2, s1, s2): |
|
|
|
global global_state |
|
if global_state.processing_state != ProcessingState.KEY_IMGS: |
|
raise gr.Error('Please generate key images before propagation') |
|
|
|
|
|
filename = os.path.splitext(os.path.basename(input_path))[0] |
|
blend_dir = os.path.join('output', filename) |
|
os.makedirs(blend_dir, exist_ok=True) |
|
|
|
video_cap = cv2.VideoCapture(input_path) |
|
fps = int(video_cap.get(cv2.CAP_PROP_FPS)) |
|
o_video = os.path.join(blend_dir, 'blend.mp4') |
|
key_ind = io.StringIO() |
|
for k in global_state.keys: |
|
print('%d'%(k), end=' ', file=key_ind) |
|
ps = '-ps' if use_poisson else '' |
|
cmd = ( |
|
f'python video_blend.py {blend_dir} --key keys ' |
|
f'--key_ind {key_ind.getvalue()} --output {o_video} --fps {fps} ' |
|
f'--n_proc {max_process} {ps}') |
|
print(cmd) |
|
os.system(cmd) |
|
return o_video |
|
|
|
global_state = GlobalState() |
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown('## FRESCO Video-to-Video Translation') |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_path = gr.Video(label='Input Video', |
|
source='upload', |
|
format='mp4', |
|
visible=True) |
|
prompt = gr.Textbox(label='Prompt') |
|
sd_model = gr.Dropdown(['SG161222/Realistic_Vision_V2.0', |
|
'runwayml/stable-diffusion-v1-5', |
|
'stablediffusionapi/rev-animated', |
|
'stablediffusionapi/flat-2d-animerge'], |
|
label='Base model', |
|
value='SG161222/Realistic_Vision_V2.0') |
|
seed = gr.Slider(label='Seed', |
|
minimum=0, |
|
maximum=2147483647, |
|
step=1, |
|
value=0, |
|
randomize=True) |
|
run_button = gr.Button(value='Run All') |
|
with gr.Row(): |
|
run_button1 = gr.Button(value='Run Key Frames') |
|
run_button2 = gr.Button(value='Run Propagation (Ebsynth)') |
|
with gr.Accordion('Advanced options for single frame processing', |
|
open=False): |
|
image_resolution = gr.Slider(label='Frame resolution', |
|
minimum=256, |
|
maximum=512, |
|
value=512, |
|
step=64) |
|
control_strength = gr.Slider(label='ControlNet strength', |
|
minimum=0.0, |
|
maximum=2.0, |
|
value=1.0, |
|
step=0.01) |
|
x0_strength = gr.Slider( |
|
label='Denoising strength', |
|
minimum=0.00, |
|
maximum=1.05, |
|
value=0.75, |
|
step=0.05, |
|
info=('0: fully recover the input.' |
|
'1.05: fully redraw the input.')) |
|
with gr.Row(): |
|
control_type = gr.Dropdown(['hed', 'canny', 'depth'], |
|
label='Control type', |
|
value='hed') |
|
low_threshold = gr.Slider(label='Canny low threshold', |
|
minimum=1, |
|
maximum=255, |
|
value=50, |
|
step=1) |
|
high_threshold = gr.Slider(label='Canny high threshold', |
|
minimum=1, |
|
maximum=255, |
|
value=100, |
|
step=1) |
|
ddpm_steps = gr.Slider(label='Steps', |
|
minimum=20, |
|
maximum=100, |
|
value=20, |
|
step=20) |
|
scale = gr.Slider(label='CFG scale', |
|
minimum=1.1, |
|
maximum=30.0, |
|
value=7.5, |
|
step=0.1) |
|
a_prompt = gr.Textbox(label='Added prompt', |
|
value='best quality, extremely detailed') |
|
n_prompt = gr.Textbox( |
|
label='Negative prompt', |
|
value=('longbody, lowres, bad anatomy, bad hands, ' |
|
'missing fingers, extra digit, fewer digits, ' |
|
'cropped, worst quality, low quality')) |
|
with gr.Row(): |
|
b1 = gr.Slider(label='FreeU first-stage backbone factor', |
|
minimum=1, |
|
maximum=1.6, |
|
value=1, |
|
step=0.01, |
|
info='FreeU to enhance texture and color') |
|
b2 = gr.Slider(label='FreeU second-stage backbone factor', |
|
minimum=1, |
|
maximum=1.6, |
|
value=1, |
|
step=0.01) |
|
with gr.Row(): |
|
s1 = gr.Slider(label='FreeU first-stage skip factor', |
|
minimum=0, |
|
maximum=1, |
|
value=1, |
|
step=0.01) |
|
s2 = gr.Slider(label='FreeU second-stage skip factor', |
|
minimum=0, |
|
maximum=1, |
|
value=1, |
|
step=0.01) |
|
with gr.Accordion('Advanced options for FRESCO constraints', |
|
open=False): |
|
frame_count = gr.Slider( |
|
label='Number of frames', |
|
minimum=8, |
|
maximum=300, |
|
value=100, |
|
step=1) |
|
batch_size = gr.Slider( |
|
label='Number of frames in a batch', |
|
minimum=3, |
|
maximum=8, |
|
value=8, |
|
step=1) |
|
mininterv = gr.Slider(label='Min keyframe interval', |
|
minimum=1, |
|
maximum=20, |
|
value=5, |
|
step=1) |
|
maxinterv = gr.Slider(label='Max keyframe interval', |
|
minimum=1, |
|
maximum=50, |
|
value=20, |
|
step=1) |
|
use_constraints = gr.CheckboxGroup( |
|
[ |
|
'spatial-guided attention', |
|
'cross-frame attention', |
|
'temporal-guided attention', |
|
'spatial-guided optimization', |
|
'temporal-guided optimization', |
|
], |
|
label='Select the FRESCO contraints to be used', |
|
value=[ |
|
'spatial-guided attention', |
|
'cross-frame attention', |
|
'temporal-guided attention', |
|
'spatial-guided optimization', |
|
'temporal-guided optimization', |
|
]), |
|
bg_smooth = gr.Checkbox( |
|
label='Background smoothing', |
|
value=True, |
|
info='Select to smooth background') |
|
|
|
with gr.Accordion( |
|
'Advanced options for the full video translation', |
|
open=False): |
|
use_poisson = gr.Checkbox( |
|
label='Gradient blending', |
|
value=True, |
|
info=('Blend the output video in gradient, to reduce' |
|
' ghosting artifacts (but may increase flickers)')) |
|
max_process = gr.Slider(label='Number of parallel processes', |
|
minimum=1, |
|
maximum=16, |
|
value=4, |
|
step=1) |
|
|
|
with gr.Accordion('Example configs', open=True): |
|
exs = ['./data/dog.mp4', |
|
'greetings from a fox by shaking front paws', |
|
'SG161222/Realistic_Vision_V2.0', |
|
0, 512, 1.0, 0.6, 'hed', 50, 100, 20, 7.5, |
|
'RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3', |
|
'(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation', |
|
100, 8, 10, 30, |
|
['spatial-guided attention', |
|
'cross-frame attention', |
|
'temporal-guided attention', |
|
'spatial-guided optimization', |
|
'temporal-guided optimization'], |
|
True, True, 4, 1, 1, 1, 1 |
|
] |
|
|
|
ips = [ |
|
input_path, prompt, sd_model, seed, image_resolution, control_strength, |
|
x0_strength, control_type, low_threshold, high_threshold, |
|
ddpm_steps, scale, a_prompt, n_prompt, |
|
frame_count, batch_size, mininterv, maxinterv, |
|
use_constraints[0], bg_smooth, use_poisson, max_process, |
|
b1, b2, s1, s2 |
|
] |
|
|
|
gr.Examples( |
|
examples=[exs], |
|
inputs=[*ips], |
|
) |
|
|
|
with gr.Column(): |
|
result_keyframe = gr.Video(label='Output key frame video', |
|
format='mp4', |
|
interactive=False) |
|
result_video = gr.Video(label='Output full video', |
|
format='mp4', |
|
interactive=False) |
|
|
|
run_button.click(fn=process, |
|
inputs=ips, |
|
outputs=[result_keyframe, result_video]) |
|
run_button1.click(fn=process1, inputs=ips, outputs=[result_keyframe]) |
|
run_button2.click(fn=process2, inputs=ips, outputs=[result_video]) |
|
|
|
block.launch(share=True) |
|
|