|
import torch |
|
from torch.utils.data import DataLoader |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
import argparse |
|
import numpy as np |
|
import os |
|
|
|
from data import build_train_dataset |
|
from gmflow.gmflow import GMFlow |
|
from loss import flow_loss_func |
|
from evaluate import (validate_chairs, validate_things, validate_sintel, validate_kitti, |
|
create_sintel_submission, create_kitti_submission, inference_on_dir) |
|
|
|
from utils.logger import Logger |
|
from utils import misc |
|
from utils.dist_utils import get_dist_info, init_dist, setup_for_distributed |
|
|
|
|
|
def get_args_parser(): |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument('--checkpoint_dir', default='tmp', type=str, |
|
help='where to save the training log and models') |
|
parser.add_argument('--stage', default='chairs', type=str, |
|
help='training stage') |
|
parser.add_argument('--image_size', default=[384, 512], type=int, nargs='+', |
|
help='image size for training') |
|
parser.add_argument('--padding_factor', default=16, type=int, |
|
help='the input should be divisible by padding_factor, otherwise do padding') |
|
|
|
parser.add_argument('--max_flow', default=400, type=int, |
|
help='exclude very large motions during training') |
|
parser.add_argument('--val_dataset', default=['chairs'], type=str, nargs='+', |
|
help='validation dataset') |
|
parser.add_argument('--with_speed_metric', action='store_true', |
|
help='with speed metric when evaluation') |
|
|
|
|
|
parser.add_argument('--lr', default=4e-4, type=float) |
|
parser.add_argument('--batch_size', default=12, type=int) |
|
parser.add_argument('--num_workers', default=4, type=int) |
|
parser.add_argument('--weight_decay', default=1e-4, type=float) |
|
parser.add_argument('--grad_clip', default=1.0, type=float) |
|
parser.add_argument('--num_steps', default=100000, type=int) |
|
parser.add_argument('--seed', default=326, type=int) |
|
parser.add_argument('--summary_freq', default=100, type=int) |
|
parser.add_argument('--val_freq', default=10000, type=int) |
|
parser.add_argument('--save_ckpt_freq', default=10000, type=int) |
|
parser.add_argument('--save_latest_ckpt_freq', default=1000, type=int) |
|
|
|
|
|
parser.add_argument('--resume', default=None, type=str, |
|
help='resume from pretrain model for finetuing or resume from terminated training') |
|
parser.add_argument('--strict_resume', action='store_true') |
|
parser.add_argument('--no_resume_optimizer', action='store_true') |
|
|
|
|
|
parser.add_argument('--num_scales', default=1, type=int, |
|
help='basic gmflow model uses a single 1/8 feature, the refinement uses 1/4 feature') |
|
parser.add_argument('--feature_channels', default=128, type=int) |
|
parser.add_argument('--upsample_factor', default=8, type=int) |
|
parser.add_argument('--num_transformer_layers', default=6, type=int) |
|
parser.add_argument('--num_head', default=1, type=int) |
|
parser.add_argument('--attention_type', default='swin', type=str) |
|
parser.add_argument('--ffn_dim_expansion', default=4, type=int) |
|
|
|
parser.add_argument('--attn_splits_list', default=[2], type=int, nargs='+', |
|
help='number of splits in attention') |
|
parser.add_argument('--corr_radius_list', default=[-1], type=int, nargs='+', |
|
help='correlation radius for matching, -1 indicates global matching') |
|
parser.add_argument('--prop_radius_list', default=[-1], type=int, nargs='+', |
|
help='self-attention radius for flow propagation, -1 indicates global attention') |
|
|
|
|
|
parser.add_argument('--gamma', default=0.9, type=float, |
|
help='loss weight') |
|
|
|
|
|
parser.add_argument('--eval', action='store_true') |
|
parser.add_argument('--save_eval_to_file', action='store_true') |
|
parser.add_argument('--evaluate_matched_unmatched', action='store_true') |
|
|
|
|
|
parser.add_argument('--inference_dir', default=None, type=str) |
|
parser.add_argument('--inference_size', default=None, type=int, nargs='+', |
|
help='can specify the inference size') |
|
parser.add_argument('--dir_paired_data', action='store_true', |
|
help='Paired data in a dir instead of a sequence') |
|
parser.add_argument('--save_flo_flow', action='store_true') |
|
parser.add_argument('--pred_bidir_flow', action='store_true', |
|
help='predict bidirectional flow') |
|
parser.add_argument('--fwd_bwd_consistency_check', action='store_true', |
|
help='forward backward consistency check with bidirection flow') |
|
|
|
|
|
parser.add_argument('--submission', action='store_true', |
|
help='submission to sintel or kitti test sets') |
|
parser.add_argument('--output_path', default='output', type=str, |
|
help='where to save the prediction results') |
|
parser.add_argument('--save_vis_flow', action='store_true', |
|
help='visualize flow prediction as .png image') |
|
parser.add_argument('--no_save_flo', action='store_true', |
|
help='not save flow as .flo') |
|
|
|
|
|
parser.add_argument('--local_rank', default=0, type=int) |
|
parser.add_argument('--distributed', action='store_true') |
|
parser.add_argument('--launcher', default='none', type=str, choices=['none', 'pytorch']) |
|
parser.add_argument('--gpu_ids', default=0, type=int, nargs='+') |
|
|
|
parser.add_argument('--count_time', action='store_true', |
|
help='measure the inference time on sintel') |
|
|
|
return parser |
|
|
|
|
|
def main(args): |
|
if not args.eval and not args.submission and args.inference_dir is None: |
|
if args.local_rank == 0: |
|
print('pytorch version:', torch.__version__) |
|
print(args) |
|
misc.save_args(args) |
|
misc.check_path(args.checkpoint_dir) |
|
misc.save_command(args.checkpoint_dir) |
|
|
|
seed = args.seed |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
torch.backends.cudnn.benchmark = True |
|
|
|
if args.launcher == 'none': |
|
args.distributed = False |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
else: |
|
args.distributed = True |
|
|
|
|
|
assert args.batch_size % torch.cuda.device_count() == 0 |
|
args.batch_size = args.batch_size // torch.cuda.device_count() |
|
|
|
dist_params = dict(backend='nccl') |
|
init_dist(args.launcher, **dist_params) |
|
|
|
_, world_size = get_dist_info() |
|
args.gpu_ids = range(world_size) |
|
device = torch.device('cuda:{}'.format(args.local_rank)) |
|
|
|
setup_for_distributed(args.local_rank == 0) |
|
|
|
|
|
model = GMFlow(feature_channels=args.feature_channels, |
|
num_scales=args.num_scales, |
|
upsample_factor=args.upsample_factor, |
|
num_head=args.num_head, |
|
attention_type=args.attention_type, |
|
ffn_dim_expansion=args.ffn_dim_expansion, |
|
num_transformer_layers=args.num_transformer_layers, |
|
).to(device) |
|
|
|
if not args.eval and not args.submission and not args.inference_dir: |
|
print('Model definition:') |
|
print(model) |
|
|
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel( |
|
model.to(device), |
|
device_ids=[args.local_rank], |
|
output_device=args.local_rank) |
|
model_without_ddp = model.module |
|
else: |
|
if torch.cuda.device_count() > 1: |
|
print('Use %d GPUs' % torch.cuda.device_count()) |
|
model = torch.nn.DataParallel(model) |
|
|
|
model_without_ddp = model.module |
|
else: |
|
model_without_ddp = model |
|
|
|
num_params = sum(p.numel() for p in model.parameters()) |
|
print('Number of params:', num_params) |
|
if not args.eval and not args.submission and args.inference_dir is None: |
|
save_name = '%d_parameters' % num_params |
|
open(os.path.join(args.checkpoint_dir, save_name), 'a').close() |
|
|
|
optimizer = torch.optim.AdamW(model_without_ddp.parameters(), lr=args.lr, |
|
weight_decay=args.weight_decay) |
|
|
|
start_epoch = 0 |
|
start_step = 0 |
|
|
|
if args.resume: |
|
print('Load checkpoint: %s' % args.resume) |
|
|
|
loc = 'cuda:{}'.format(args.local_rank) |
|
checkpoint = torch.load(args.resume, map_location=loc) |
|
|
|
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint |
|
|
|
model_without_ddp.load_state_dict(weights, strict=args.strict_resume) |
|
|
|
if 'optimizer' in checkpoint and 'step' in checkpoint and 'epoch' in checkpoint and not \ |
|
args.no_resume_optimizer: |
|
print('Load optimizer') |
|
optimizer.load_state_dict(checkpoint['optimizer']) |
|
start_epoch = checkpoint['epoch'] |
|
start_step = checkpoint['step'] |
|
|
|
print('start_epoch: %d, start_step: %d' % (start_epoch, start_step)) |
|
|
|
|
|
if args.eval: |
|
val_results = {} |
|
|
|
if 'chairs' in args.val_dataset: |
|
results_dict = validate_chairs(model_without_ddp, |
|
with_speed_metric=args.with_speed_metric, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
|
|
val_results.update(results_dict) |
|
|
|
if 'things' in args.val_dataset: |
|
results_dict = validate_things(model_without_ddp, |
|
padding_factor=args.padding_factor, |
|
with_speed_metric=args.with_speed_metric, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
val_results.update(results_dict) |
|
|
|
if 'sintel' in args.val_dataset: |
|
results_dict = validate_sintel(model_without_ddp, |
|
count_time=args.count_time, |
|
padding_factor=args.padding_factor, |
|
with_speed_metric=args.with_speed_metric, |
|
evaluate_matched_unmatched=args.evaluate_matched_unmatched, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
val_results.update(results_dict) |
|
|
|
if 'kitti' in args.val_dataset: |
|
results_dict = validate_kitti(model_without_ddp, |
|
padding_factor=args.padding_factor, |
|
with_speed_metric=args.with_speed_metric, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
val_results.update(results_dict) |
|
|
|
if args.save_eval_to_file: |
|
misc.check_path(args.checkpoint_dir) |
|
val_file = os.path.join(args.checkpoint_dir, 'val_results.txt') |
|
with open(val_file, 'a') as f: |
|
f.write('\neval results after training done\n\n') |
|
metrics = ['chairs_epe', 'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+', |
|
'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40', 'things_clean_s40+', |
|
'things_final_epe', 'things_final_s0_10', 'things_final_s10_40', 'things_final_s40+', |
|
'sintel_clean_epe', 'sintel_clean_s0_10', 'sintel_clean_s10_40', 'sintel_clean_s40+', |
|
'sintel_final_epe', 'sintel_final_s0_10', 'sintel_final_s10_40', 'sintel_final_s40+', |
|
'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+', |
|
] |
|
eval_metrics = [] |
|
for metric in metrics: |
|
if metric in val_results.keys(): |
|
eval_metrics.append(metric) |
|
|
|
metrics_values = [val_results[metric] for metric in eval_metrics] |
|
|
|
num_metrics = len(eval_metrics) |
|
|
|
|
|
f.write(("| {:>20} " * num_metrics + '\n').format(*eval_metrics)) |
|
f.write(("| {:20.3f} " * num_metrics).format(*metrics_values)) |
|
|
|
f.write('\n\n') |
|
|
|
return |
|
|
|
|
|
if args.submission: |
|
|
|
if args.val_dataset[0] == 'sintel': |
|
create_sintel_submission(model_without_ddp, |
|
output_path=args.output_path, |
|
padding_factor=args.padding_factor, |
|
save_vis_flow=args.save_vis_flow, |
|
no_save_flo=args.no_save_flo, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
elif args.val_dataset[0] == 'kitti': |
|
create_kitti_submission(model_without_ddp, |
|
output_path=args.output_path, |
|
padding_factor=args.padding_factor, |
|
save_vis_flow=args.save_vis_flow, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
else: |
|
raise ValueError(f'Not supported dataset for submission') |
|
|
|
return |
|
|
|
|
|
if args.inference_dir is not None: |
|
inference_on_dir(model_without_ddp, |
|
inference_dir=args.inference_dir, |
|
output_path=args.output_path, |
|
padding_factor=args.padding_factor, |
|
inference_size=args.inference_size, |
|
paired_data=args.dir_paired_data, |
|
save_flo_flow=args.save_flo_flow, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
pred_bidir_flow=args.pred_bidir_flow, |
|
fwd_bwd_consistency_check=args.fwd_bwd_consistency_check, |
|
) |
|
|
|
return |
|
|
|
|
|
train_dataset = build_train_dataset(args) |
|
print('Number of training images:', len(train_dataset)) |
|
|
|
|
|
if args.distributed: |
|
train_sampler = torch.utils.data.distributed.DistributedSampler( |
|
train_dataset, |
|
num_replicas=torch.cuda.device_count(), |
|
rank=args.local_rank) |
|
else: |
|
train_sampler = None |
|
|
|
shuffle = False if args.distributed else True |
|
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, |
|
shuffle=shuffle, num_workers=args.num_workers, |
|
pin_memory=True, drop_last=True, |
|
sampler=train_sampler) |
|
|
|
last_epoch = start_step if args.resume and start_step > 0 else -1 |
|
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR( |
|
optimizer, args.lr, |
|
args.num_steps + 10, |
|
pct_start=0.05, |
|
cycle_momentum=False, |
|
anneal_strategy='cos', |
|
last_epoch=last_epoch, |
|
) |
|
|
|
if args.local_rank == 0: |
|
summary_writer = SummaryWriter(args.checkpoint_dir) |
|
logger = Logger(lr_scheduler, summary_writer, args.summary_freq, |
|
start_step=start_step) |
|
|
|
total_steps = start_step |
|
epoch = start_epoch |
|
print('Start training') |
|
|
|
while total_steps < args.num_steps: |
|
model.train() |
|
|
|
|
|
if args.distributed: |
|
train_sampler.set_epoch(epoch) |
|
|
|
for i, sample in enumerate(train_loader): |
|
img1, img2, flow_gt, valid = [x.to(device) for x in sample] |
|
|
|
results_dict = model(img1, img2, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
|
|
flow_preds = results_dict['flow_preds'] |
|
|
|
loss, metrics = flow_loss_func(flow_preds, flow_gt, valid, |
|
gamma=args.gamma, |
|
max_flow=args.max_flow, |
|
) |
|
|
|
if isinstance(loss, float): |
|
continue |
|
|
|
if torch.isnan(loss): |
|
continue |
|
|
|
metrics.update({'total_loss': loss.item()}) |
|
|
|
|
|
for param in model_without_ddp.parameters(): |
|
param.grad = None |
|
|
|
loss.backward() |
|
|
|
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) |
|
|
|
optimizer.step() |
|
|
|
lr_scheduler.step() |
|
|
|
if args.local_rank == 0: |
|
logger.push(metrics) |
|
|
|
logger.add_image_summary(img1, img2, flow_preds, flow_gt) |
|
|
|
total_steps += 1 |
|
|
|
if total_steps % args.save_ckpt_freq == 0 or total_steps == args.num_steps: |
|
if args.local_rank == 0: |
|
checkpoint_path = os.path.join(args.checkpoint_dir, 'step_%06d.pth' % total_steps) |
|
torch.save({ |
|
'model': model_without_ddp.state_dict() |
|
}, checkpoint_path) |
|
|
|
if total_steps % args.save_latest_ckpt_freq == 0: |
|
checkpoint_path = os.path.join(args.checkpoint_dir, 'checkpoint_latest.pth') |
|
|
|
if args.local_rank == 0: |
|
torch.save({ |
|
'model': model_without_ddp.state_dict(), |
|
'optimizer': optimizer.state_dict(), |
|
'step': total_steps, |
|
'epoch': epoch, |
|
}, checkpoint_path) |
|
|
|
if total_steps % args.val_freq == 0: |
|
print('Start validation') |
|
|
|
val_results = {} |
|
|
|
if 'chairs' in args.val_dataset: |
|
results_dict = validate_chairs(model_without_ddp, |
|
with_speed_metric=args.with_speed_metric, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
if args.local_rank == 0: |
|
val_results.update(results_dict) |
|
|
|
if 'things' in args.val_dataset: |
|
results_dict = validate_things(model_without_ddp, |
|
padding_factor=args.padding_factor, |
|
with_speed_metric=args.with_speed_metric, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
if args.local_rank == 0: |
|
val_results.update(results_dict) |
|
|
|
if 'sintel' in args.val_dataset: |
|
results_dict = validate_sintel(model_without_ddp, |
|
count_time=args.count_time, |
|
padding_factor=args.padding_factor, |
|
with_speed_metric=args.with_speed_metric, |
|
evaluate_matched_unmatched=args.evaluate_matched_unmatched, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
if args.local_rank == 0: |
|
val_results.update(results_dict) |
|
|
|
if 'kitti' in args.val_dataset: |
|
results_dict = validate_kitti(model_without_ddp, |
|
padding_factor=args.padding_factor, |
|
with_speed_metric=args.with_speed_metric, |
|
attn_splits_list=args.attn_splits_list, |
|
corr_radius_list=args.corr_radius_list, |
|
prop_radius_list=args.prop_radius_list, |
|
) |
|
if args.local_rank == 0: |
|
val_results.update(results_dict) |
|
|
|
if args.local_rank == 0: |
|
logger.write_dict(val_results) |
|
|
|
|
|
val_file = os.path.join(args.checkpoint_dir, 'val_results.txt') |
|
with open(val_file, 'a') as f: |
|
f.write('step: %06d\n' % total_steps) |
|
if args.evaluate_matched_unmatched: |
|
metrics = ['chairs_epe', |
|
'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+', |
|
'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40', |
|
'things_clean_s40+', |
|
'sintel_clean_epe', 'sintel_clean_matched', 'sintel_clean_unmatched', |
|
'sintel_clean_s0_10', 'sintel_clean_s10_40', |
|
'sintel_clean_s40+', |
|
'sintel_final_epe', 'sintel_final_matched', 'sintel_final_unmatched', |
|
'sintel_final_s0_10', 'sintel_final_s10_40', |
|
'sintel_final_s40+', |
|
'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+', |
|
] |
|
else: |
|
metrics = ['chairs_epe', 'chairs_s0_10', 'chairs_s10_40', 'chairs_s40+', |
|
'things_clean_epe', 'things_clean_s0_10', 'things_clean_s10_40', |
|
'things_clean_s40+', |
|
'sintel_clean_epe', 'sintel_clean_s0_10', 'sintel_clean_s10_40', |
|
'sintel_clean_s40+', |
|
'sintel_final_epe', 'sintel_final_s0_10', 'sintel_final_s10_40', |
|
'sintel_final_s40+', |
|
'kitti_epe', 'kitti_f1', 'kitti_s0_10', 'kitti_s10_40', 'kitti_s40+', |
|
] |
|
|
|
eval_metrics = [] |
|
for metric in metrics: |
|
if metric in val_results.keys(): |
|
eval_metrics.append(metric) |
|
|
|
metrics_values = [val_results[metric] for metric in eval_metrics] |
|
|
|
num_metrics = len(eval_metrics) |
|
|
|
|
|
if args.evaluate_matched_unmatched: |
|
f.write(("| {:>25} " * num_metrics + '\n').format(*eval_metrics)) |
|
f.write(("| {:25.3f} " * num_metrics).format(*metrics_values)) |
|
else: |
|
f.write(("| {:>20} " * num_metrics + '\n').format(*eval_metrics)) |
|
f.write(("| {:20.3f} " * num_metrics).format(*metrics_values)) |
|
|
|
f.write('\n\n') |
|
|
|
model.train() |
|
|
|
if total_steps >= args.num_steps: |
|
print('Training done') |
|
|
|
return |
|
|
|
epoch += 1 |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = get_args_parser() |
|
args = parser.parse_args() |
|
|
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
|
|
main(args) |
|
|