|
from PIL import Image |
|
import os |
|
import time |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
import data |
|
from utils import frame_utils |
|
from utils.flow_viz import save_vis_flow_tofile |
|
|
|
from utils.utils import InputPadder, compute_out_of_boundary_mask |
|
from glob import glob |
|
from gmflow.geometry import forward_backward_consistency_check |
|
|
|
|
|
@torch.no_grad() |
|
def create_sintel_submission(model, |
|
output_path='sintel_submission', |
|
padding_factor=8, |
|
save_vis_flow=False, |
|
no_save_flo=False, |
|
attn_splits_list=None, |
|
corr_radius_list=None, |
|
prop_radius_list=None, |
|
): |
|
""" Create submission for the Sintel leaderboard """ |
|
model.eval() |
|
for dstype in ['clean', 'final']: |
|
test_dataset = data.MpiSintel(split='test', aug_params=None, dstype=dstype) |
|
|
|
flow_prev, sequence_prev = None, None |
|
for test_id in range(len(test_dataset)): |
|
image1, image2, (sequence, frame) = test_dataset[test_id] |
|
if sequence != sequence_prev: |
|
flow_prev = None |
|
|
|
padder = InputPadder(image1.shape, padding_factor=padding_factor) |
|
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) |
|
|
|
results_dict = model(image1, image2, |
|
attn_splits_list=attn_splits_list, |
|
corr_radius_list=corr_radius_list, |
|
prop_radius_list=prop_radius_list, |
|
) |
|
|
|
flow_pr = results_dict['flow_preds'][-1] |
|
|
|
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() |
|
|
|
output_dir = os.path.join(output_path, dstype, sequence) |
|
output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame + 1)) |
|
|
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
if not no_save_flo: |
|
frame_utils.writeFlow(output_file, flow) |
|
sequence_prev = sequence |
|
|
|
|
|
if save_vis_flow: |
|
vis_flow_file = output_file.replace('.flo', '.png') |
|
save_vis_flow_tofile(flow, vis_flow_file) |
|
|
|
|
|
@torch.no_grad() |
|
def create_kitti_submission(model, |
|
output_path='kitti_submission', |
|
padding_factor=8, |
|
save_vis_flow=False, |
|
attn_splits_list=None, |
|
corr_radius_list=None, |
|
prop_radius_list=None, |
|
): |
|
""" Create submission for the Sintel leaderboard """ |
|
model.eval() |
|
test_dataset = data.KITTI(split='testing', aug_params=None) |
|
|
|
if not os.path.exists(output_path): |
|
os.makedirs(output_path) |
|
|
|
for test_id in range(len(test_dataset)): |
|
image1, image2, (frame_id,) = test_dataset[test_id] |
|
padder = InputPadder(image1.shape, mode='kitti', padding_factor=padding_factor) |
|
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) |
|
|
|
results_dict = model(image1, image2, |
|
attn_splits_list=attn_splits_list, |
|
corr_radius_list=corr_radius_list, |
|
prop_radius_list=prop_radius_list, |
|
) |
|
|
|
flow_pr = results_dict['flow_preds'][-1] |
|
|
|
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() |
|
|
|
output_filename = os.path.join(output_path, frame_id) |
|
|
|
if save_vis_flow: |
|
vis_flow_file = output_filename |
|
save_vis_flow_tofile(flow, vis_flow_file) |
|
else: |
|
frame_utils.writeFlowKITTI(output_filename, flow) |
|
|
|
|
|
@torch.no_grad() |
|
def validate_chairs(model, |
|
with_speed_metric=False, |
|
attn_splits_list=False, |
|
corr_radius_list=False, |
|
prop_radius_list=False, |
|
): |
|
""" Perform evaluation on the FlyingChairs (test) split """ |
|
model.eval() |
|
epe_list = [] |
|
results = {} |
|
|
|
if with_speed_metric: |
|
s0_10_list = [] |
|
s10_40_list = [] |
|
s40plus_list = [] |
|
|
|
val_dataset = data.FlyingChairs(split='validation') |
|
|
|
print('Number of validation image pairs: %d' % len(val_dataset)) |
|
|
|
for val_id in range(len(val_dataset)): |
|
image1, image2, flow_gt, _ = val_dataset[val_id] |
|
|
|
image1 = image1[None].cuda() |
|
image2 = image2[None].cuda() |
|
|
|
results_dict = model(image1, image2, |
|
attn_splits_list=attn_splits_list, |
|
corr_radius_list=corr_radius_list, |
|
prop_radius_list=prop_radius_list, |
|
) |
|
|
|
flow_pr = results_dict['flow_preds'][-1] |
|
|
|
assert flow_pr.size()[-2:] == flow_gt.size()[-2:] |
|
|
|
epe = torch.sum((flow_pr[0].cpu() - flow_gt) ** 2, dim=0).sqrt() |
|
epe_list.append(epe.view(-1).numpy()) |
|
|
|
if with_speed_metric: |
|
flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() |
|
valid_mask = (flow_gt_speed < 10) |
|
if valid_mask.max() > 0: |
|
s0_10_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) |
|
if valid_mask.max() > 0: |
|
s10_40_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
valid_mask = (flow_gt_speed > 40) |
|
if valid_mask.max() > 0: |
|
s40plus_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
epe_all = np.concatenate(epe_list) |
|
epe = np.mean(epe_all) |
|
px1 = np.mean(epe_all > 1) |
|
px3 = np.mean(epe_all > 3) |
|
px5 = np.mean(epe_all > 5) |
|
print("Validation Chairs EPE: %.3f, 1px: %.3f, 3px: %.3f, 5px: %.3f" % (epe, px1, px3, px5)) |
|
results['chairs_epe'] = epe |
|
results['chairs_1px'] = px1 |
|
results['chairs_3px'] = px3 |
|
results['chairs_5px'] = px5 |
|
|
|
if with_speed_metric: |
|
s0_10 = np.mean(np.concatenate(s0_10_list)) |
|
s10_40 = np.mean(np.concatenate(s10_40_list)) |
|
s40plus = np.mean(np.concatenate(s40plus_list)) |
|
|
|
print("Validation Chairs s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( |
|
s0_10, |
|
s10_40, |
|
s40plus)) |
|
|
|
results['chairs_s0_10'] = s0_10 |
|
results['chairs_s10_40'] = s10_40 |
|
results['chairs_s40+'] = s40plus |
|
|
|
return results |
|
|
|
|
|
@torch.no_grad() |
|
def validate_things(model, |
|
padding_factor=8, |
|
with_speed_metric=False, |
|
max_val_flow=400, |
|
val_things_clean_only=True, |
|
attn_splits_list=False, |
|
corr_radius_list=False, |
|
prop_radius_list=False, |
|
): |
|
""" Peform validation using the Things (test) split """ |
|
model.eval() |
|
results = {} |
|
|
|
for dstype in ['frames_cleanpass', 'frames_finalpass']: |
|
if val_things_clean_only: |
|
if dstype == 'frames_finalpass': |
|
continue |
|
|
|
val_dataset = data.FlyingThings3D(dstype=dstype, test_set=True, validate_subset=True, |
|
) |
|
print('Number of validation image pairs: %d' % len(val_dataset)) |
|
epe_list = [] |
|
|
|
if with_speed_metric: |
|
s0_10_list = [] |
|
s10_40_list = [] |
|
s40plus_list = [] |
|
|
|
for val_id in range(len(val_dataset)): |
|
image1, image2, flow_gt, valid_gt = val_dataset[val_id] |
|
image1 = image1[None].cuda() |
|
image2 = image2[None].cuda() |
|
|
|
padder = InputPadder(image1.shape, padding_factor=padding_factor) |
|
image1, image2 = padder.pad(image1, image2) |
|
|
|
results_dict = model(image1, image2, |
|
attn_splits_list=attn_splits_list, |
|
corr_radius_list=corr_radius_list, |
|
prop_radius_list=prop_radius_list, |
|
) |
|
flow_pr = results_dict['flow_preds'][-1] |
|
|
|
flow = padder.unpad(flow_pr[0]).cpu() |
|
|
|
|
|
flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() |
|
valid_gt = valid_gt * (flow_gt_speed < max_val_flow) |
|
valid_gt = valid_gt.contiguous() |
|
|
|
epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt() |
|
val = valid_gt >= 0.5 |
|
epe_list.append(epe[val].cpu().numpy()) |
|
|
|
if with_speed_metric: |
|
valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) |
|
if valid_mask.max() > 0: |
|
s0_10_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5) |
|
if valid_mask.max() > 0: |
|
s10_40_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5) |
|
if valid_mask.max() > 0: |
|
s40plus_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
epe_list = np.mean(np.concatenate(epe_list)) |
|
|
|
epe = np.mean(epe_list) |
|
|
|
if dstype == 'frames_cleanpass': |
|
dstype = 'things_clean' |
|
if dstype == 'frames_finalpass': |
|
dstype = 'things_final' |
|
|
|
print("Validation Things test set (%s) EPE: %.3f" % (dstype, epe)) |
|
results[dstype + '_epe'] = epe |
|
|
|
if with_speed_metric: |
|
s0_10 = np.mean(np.concatenate(s0_10_list)) |
|
s10_40 = np.mean(np.concatenate(s10_40_list)) |
|
s40plus = np.mean(np.concatenate(s40plus_list)) |
|
|
|
print("Validation Things test (%s) s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( |
|
dstype, s0_10, |
|
s10_40, |
|
s40plus)) |
|
|
|
results[dstype + '_s0_10'] = s0_10 |
|
results[dstype + '_s10_40'] = s10_40 |
|
results[dstype + '_s40+'] = s40plus |
|
|
|
return results |
|
|
|
|
|
@torch.no_grad() |
|
def validate_sintel(model, |
|
count_time=False, |
|
padding_factor=8, |
|
with_speed_metric=False, |
|
evaluate_matched_unmatched=False, |
|
attn_splits_list=False, |
|
corr_radius_list=False, |
|
prop_radius_list=False, |
|
): |
|
""" Peform validation using the Sintel (train) split """ |
|
model.eval() |
|
results = {} |
|
|
|
if count_time: |
|
total_time = 0 |
|
num_runs = 100 |
|
|
|
for dstype in ['clean', 'final']: |
|
val_dataset = data.MpiSintel(split='training', dstype=dstype, |
|
load_occlusion=evaluate_matched_unmatched, |
|
) |
|
|
|
print('Number of validation image pairs: %d' % len(val_dataset)) |
|
epe_list = [] |
|
|
|
if evaluate_matched_unmatched: |
|
matched_epe_list = [] |
|
unmatched_epe_list = [] |
|
|
|
if with_speed_metric: |
|
s0_10_list = [] |
|
s10_40_list = [] |
|
s40plus_list = [] |
|
|
|
for val_id in range(len(val_dataset)): |
|
if evaluate_matched_unmatched: |
|
image1, image2, flow_gt, valid, noc_valid = val_dataset[val_id] |
|
|
|
|
|
in_image_valid = compute_out_of_boundary_mask(flow_gt.unsqueeze(0)).squeeze(0) |
|
|
|
else: |
|
image1, image2, flow_gt, _ = val_dataset[val_id] |
|
|
|
image1 = image1[None].cuda() |
|
image2 = image2[None].cuda() |
|
|
|
padder = InputPadder(image1.shape, padding_factor=padding_factor) |
|
image1, image2 = padder.pad(image1, image2) |
|
|
|
if count_time and val_id >= 5: |
|
torch.cuda.synchronize() |
|
time_start = time.perf_counter() |
|
|
|
results_dict = model(image1, image2, |
|
attn_splits_list=attn_splits_list, |
|
corr_radius_list=corr_radius_list, |
|
prop_radius_list=prop_radius_list, |
|
) |
|
|
|
|
|
flow_pr = results_dict['flow_preds'][-1] |
|
|
|
if count_time and val_id >= 5: |
|
torch.cuda.synchronize() |
|
total_time += time.perf_counter() - time_start |
|
|
|
if val_id >= num_runs + 4: |
|
break |
|
|
|
flow = padder.unpad(flow_pr[0]).cpu() |
|
|
|
epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt() |
|
epe_list.append(epe.view(-1).numpy()) |
|
|
|
if evaluate_matched_unmatched: |
|
matched_valid_mask = (noc_valid > 0.5) & (in_image_valid > 0.5) |
|
|
|
if matched_valid_mask.max() > 0: |
|
matched_epe_list.append(epe[matched_valid_mask].cpu().numpy()) |
|
unmatched_epe_list.append(epe[~matched_valid_mask].cpu().numpy()) |
|
|
|
if with_speed_metric: |
|
flow_gt_speed = torch.sum(flow_gt ** 2, dim=0).sqrt() |
|
valid_mask = (flow_gt_speed < 10) |
|
if valid_mask.max() > 0: |
|
s0_10_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) |
|
if valid_mask.max() > 0: |
|
s10_40_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
valid_mask = (flow_gt_speed > 40) |
|
if valid_mask.max() > 0: |
|
s40plus_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
epe_all = np.concatenate(epe_list) |
|
epe = np.mean(epe_all) |
|
px1 = np.mean(epe_all > 1) |
|
px3 = np.mean(epe_all > 3) |
|
px5 = np.mean(epe_all > 5) |
|
|
|
dstype_ori = dstype |
|
|
|
print("Validation Sintel (%s) EPE: %.3f, 1px: %.3f, 3px: %.3f, 5px: %.3f" % (dstype_ori, epe, px1, px3, px5)) |
|
|
|
dstype = 'sintel_' + dstype |
|
|
|
results[dstype + '_epe'] = np.mean(epe_list) |
|
results[dstype + '_1px'] = px1 |
|
results[dstype + '_3px'] = px3 |
|
results[dstype + '_5px'] = px5 |
|
|
|
if with_speed_metric: |
|
s0_10 = np.mean(np.concatenate(s0_10_list)) |
|
s10_40 = np.mean(np.concatenate(s10_40_list)) |
|
s40plus = np.mean(np.concatenate(s40plus_list)) |
|
|
|
print("Validation Sintel (%s) s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( |
|
dstype_ori, s0_10, |
|
s10_40, |
|
s40plus)) |
|
|
|
results[dstype + '_s0_10'] = s0_10 |
|
results[dstype + '_s10_40'] = s10_40 |
|
results[dstype + '_s40+'] = s40plus |
|
|
|
if count_time: |
|
print('Time: %.6fs' % (total_time / num_runs)) |
|
break |
|
|
|
if evaluate_matched_unmatched: |
|
matched_epe = np.mean(np.concatenate(matched_epe_list)) |
|
unmatched_epe = np.mean(np.concatenate(unmatched_epe_list)) |
|
|
|
print('Validatation Sintel (%s) matched epe: %.3f, unmatched epe: %.3f' % ( |
|
dstype_ori, matched_epe, unmatched_epe)) |
|
|
|
results[dstype + '_matched'] = matched_epe |
|
results[dstype + '_unmatched'] = unmatched_epe |
|
|
|
return results |
|
|
|
|
|
@torch.no_grad() |
|
def validate_kitti(model, |
|
padding_factor=8, |
|
with_speed_metric=False, |
|
average_over_pixels=True, |
|
attn_splits_list=False, |
|
corr_radius_list=False, |
|
prop_radius_list=False, |
|
): |
|
""" Peform validation using the KITTI-2015 (train) split """ |
|
model.eval() |
|
|
|
val_dataset = data.KITTI(split='training') |
|
print('Number of validation image pairs: %d' % len(val_dataset)) |
|
|
|
out_list, epe_list = [], [] |
|
results = {} |
|
|
|
if with_speed_metric: |
|
if average_over_pixels: |
|
s0_10_list = [] |
|
s10_40_list = [] |
|
s40plus_list = [] |
|
else: |
|
s0_10_epe_sum = 0 |
|
s0_10_valid_samples = 0 |
|
s10_40_epe_sum = 0 |
|
s10_40_valid_samples = 0 |
|
s40plus_epe_sum = 0 |
|
s40plus_valid_samples = 0 |
|
|
|
for val_id in range(len(val_dataset)): |
|
image1, image2, flow_gt, valid_gt = val_dataset[val_id] |
|
image1 = image1[None].cuda() |
|
image2 = image2[None].cuda() |
|
|
|
padder = InputPadder(image1.shape, mode='kitti', padding_factor=padding_factor) |
|
image1, image2 = padder.pad(image1, image2) |
|
|
|
results_dict = model(image1, image2, |
|
attn_splits_list=attn_splits_list, |
|
corr_radius_list=corr_radius_list, |
|
prop_radius_list=prop_radius_list, |
|
) |
|
|
|
|
|
flow_pr = results_dict['flow_preds'][-1] |
|
|
|
flow = padder.unpad(flow_pr[0]).cpu() |
|
|
|
epe = torch.sum((flow - flow_gt) ** 2, dim=0).sqrt() |
|
mag = torch.sum(flow_gt ** 2, dim=0).sqrt() |
|
|
|
if with_speed_metric: |
|
|
|
flow_gt_speed = mag |
|
|
|
if average_over_pixels: |
|
valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) |
|
if valid_mask.max() > 0: |
|
s0_10_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5) |
|
if valid_mask.max() > 0: |
|
s10_40_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5) |
|
if valid_mask.max() > 0: |
|
s40plus_list.append(epe[valid_mask].cpu().numpy()) |
|
|
|
else: |
|
valid_mask = (flow_gt_speed < 10) * (valid_gt >= 0.5) |
|
if valid_mask.max() > 0: |
|
s0_10_epe_sum += (epe * valid_mask).sum() / valid_mask.sum() |
|
s0_10_valid_samples += 1 |
|
|
|
valid_mask = (flow_gt_speed >= 10) * (flow_gt_speed <= 40) * (valid_gt >= 0.5) |
|
if valid_mask.max() > 0: |
|
s10_40_epe_sum += (epe * valid_mask).sum() / valid_mask.sum() |
|
s10_40_valid_samples += 1 |
|
|
|
valid_mask = (flow_gt_speed > 40) * (valid_gt >= 0.5) |
|
if valid_mask.max() > 0: |
|
s40plus_epe_sum += (epe * valid_mask).sum() / valid_mask.sum() |
|
s40plus_valid_samples += 1 |
|
|
|
epe = epe.view(-1) |
|
mag = mag.view(-1) |
|
val = valid_gt.view(-1) >= 0.5 |
|
|
|
out = ((epe > 3.0) & ((epe / mag) > 0.05)).float() |
|
|
|
if average_over_pixels: |
|
epe_list.append(epe[val].cpu().numpy()) |
|
else: |
|
epe_list.append(epe[val].mean().item()) |
|
|
|
out_list.append(out[val].cpu().numpy()) |
|
|
|
if average_over_pixels: |
|
epe_list = np.concatenate(epe_list) |
|
else: |
|
epe_list = np.array(epe_list) |
|
out_list = np.concatenate(out_list) |
|
|
|
epe = np.mean(epe_list) |
|
f1 = 100 * np.mean(out_list) |
|
|
|
print("Validation KITTI EPE: %.3f, F1-all: %.3f" % (epe, f1)) |
|
results['kitti_epe'] = epe |
|
results['kitti_f1'] = f1 |
|
|
|
if with_speed_metric: |
|
if average_over_pixels: |
|
s0_10 = np.mean(np.concatenate(s0_10_list)) |
|
s10_40 = np.mean(np.concatenate(s10_40_list)) |
|
s40plus = np.mean(np.concatenate(s40plus_list)) |
|
else: |
|
s0_10 = s0_10_epe_sum / s0_10_valid_samples |
|
s10_40 = s10_40_epe_sum / s10_40_valid_samples |
|
s40plus = s40plus_epe_sum / s40plus_valid_samples |
|
|
|
print("Validation KITTI s0_10: %.3f, s10_40: %.3f, s40+: %.3f" % ( |
|
s0_10, |
|
s10_40, |
|
s40plus)) |
|
|
|
results['kitti_s0_10'] = s0_10 |
|
results['kitti_s10_40'] = s10_40 |
|
results['kitti_s40+'] = s40plus |
|
|
|
return results |
|
|
|
|
|
@torch.no_grad() |
|
def inference_on_dir(model, |
|
inference_dir, |
|
output_path='output', |
|
padding_factor=8, |
|
inference_size=None, |
|
paired_data=False, |
|
save_flo_flow=False, |
|
attn_splits_list=None, |
|
corr_radius_list=None, |
|
prop_radius_list=None, |
|
pred_bidir_flow=False, |
|
fwd_bwd_consistency_check=False, |
|
): |
|
""" Inference on a directory """ |
|
model.eval() |
|
|
|
if fwd_bwd_consistency_check: |
|
assert pred_bidir_flow |
|
|
|
if not os.path.exists(output_path): |
|
os.makedirs(output_path) |
|
|
|
filenames = sorted(glob(inference_dir + '/*')) |
|
print('%d images found' % len(filenames)) |
|
|
|
stride = 2 if paired_data else 1 |
|
|
|
if paired_data: |
|
assert len(filenames) % 2 == 0 |
|
|
|
for test_id in range(0, len(filenames) - 1, stride): |
|
|
|
image1 = frame_utils.read_gen(filenames[test_id]) |
|
image2 = frame_utils.read_gen(filenames[test_id + 1]) |
|
|
|
image1 = np.array(image1).astype(np.uint8) |
|
image2 = np.array(image2).astype(np.uint8) |
|
|
|
if len(image1.shape) == 2: |
|
image1 = np.tile(image1[..., None], (1, 1, 3)) |
|
image2 = np.tile(image2[..., None], (1, 1, 3)) |
|
else: |
|
image1 = image1[..., :3] |
|
image2 = image2[..., :3] |
|
|
|
image1 = torch.from_numpy(image1).permute(2, 0, 1).float() |
|
image2 = torch.from_numpy(image2).permute(2, 0, 1).float() |
|
|
|
if inference_size is None: |
|
padder = InputPadder(image1.shape, padding_factor=padding_factor) |
|
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda()) |
|
else: |
|
image1, image2 = image1[None].cuda(), image2[None].cuda() |
|
|
|
|
|
if inference_size is not None: |
|
assert isinstance(inference_size, list) or isinstance(inference_size, tuple) |
|
ori_size = image1.shape[-2:] |
|
image1 = F.interpolate(image1, size=inference_size, mode='bilinear', |
|
align_corners=True) |
|
image2 = F.interpolate(image2, size=inference_size, mode='bilinear', |
|
align_corners=True) |
|
|
|
results_dict = model(image1, image2, |
|
attn_splits_list=attn_splits_list, |
|
corr_radius_list=corr_radius_list, |
|
prop_radius_list=prop_radius_list, |
|
pred_bidir_flow=pred_bidir_flow, |
|
) |
|
|
|
flow_pr = results_dict['flow_preds'][-1] |
|
|
|
|
|
if inference_size is not None: |
|
flow_pr = F.interpolate(flow_pr, size=ori_size, mode='bilinear', |
|
align_corners=True) |
|
flow_pr[:, 0] = flow_pr[:, 0] * ori_size[-1] / inference_size[-1] |
|
flow_pr[:, 1] = flow_pr[:, 1] * ori_size[-2] / inference_size[-2] |
|
|
|
if inference_size is None: |
|
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy() |
|
else: |
|
flow = flow_pr[0].permute(1, 2, 0).cpu().numpy() |
|
|
|
output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_flow.png') |
|
|
|
|
|
save_vis_flow_tofile(flow, output_file) |
|
|
|
|
|
if pred_bidir_flow: |
|
assert flow_pr.size(0) == 2 |
|
|
|
if inference_size is None: |
|
flow_bwd = padder.unpad(flow_pr[1]).permute(1, 2, 0).cpu().numpy() |
|
else: |
|
flow_bwd = flow_pr[1].permute(1, 2, 0).cpu().numpy() |
|
|
|
output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_flow_bwd.png') |
|
|
|
|
|
save_vis_flow_tofile(flow_bwd, output_file) |
|
|
|
|
|
|
|
if fwd_bwd_consistency_check: |
|
if inference_size is None: |
|
fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) |
|
bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) |
|
else: |
|
fwd_flow = flow_pr[0].unsqueeze(0) |
|
bwd_flow = flow_pr[1].unsqueeze(0) |
|
|
|
fwd_occ, bwd_occ = forward_backward_consistency_check(fwd_flow, bwd_flow) |
|
|
|
fwd_occ_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_occ.png') |
|
bwd_occ_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_occ_bwd.png') |
|
|
|
Image.fromarray((fwd_occ[0].cpu().numpy() * 255.).astype(np.uint8)).save(fwd_occ_file) |
|
Image.fromarray((bwd_occ[0].cpu().numpy() * 255.).astype(np.uint8)).save(bwd_occ_file) |
|
|
|
if save_flo_flow: |
|
output_file = os.path.join(output_path, os.path.basename(filenames[test_id])[:-4] + '_pred.flo') |
|
frame_utils.writeFlow(output_file, flow) |
|
|