Grounded-Segment-Anything / VISAM /models /deformable_transformer_plus.py
hikerxu's picture
Upload folder using huggingface_hub
483de47 verified
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-research. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import copy
from typing import Optional, List
import math
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_
from models.structures import Boxes, matched_boxlist_iou, pairwise_iou
from util.misc import inverse_sigmoid
from util.box_ops import box_cxcywh_to_xyxy
from models.ops.modules import MSDeformAttn
class DeformableTransformer(nn.Module):
def __init__(self, d_model=256, nhead=8,
num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1,
activation="relu", return_intermediate_dec=False,
num_feature_levels=4, dec_n_points=4, enc_n_points=4,
two_stage=False, two_stage_num_proposals=300, decoder_self_cross=True, sigmoid_attn=False,
extra_track_attn=False, memory_bank=False):
super().__init__()
self.new_frame_adaptor = None
self.d_model = d_model
self.nhead = nhead
self.two_stage = two_stage
self.two_stage_num_proposals = two_stage_num_proposals
encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward,
dropout, activation,
num_feature_levels, nhead, enc_n_points,
sigmoid_attn=sigmoid_attn)
self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers)
decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward,
dropout, activation,
num_feature_levels, nhead, dec_n_points, decoder_self_cross,
sigmoid_attn=sigmoid_attn, extra_track_attn=extra_track_attn,
memory_bank=memory_bank)
self.decoder = DeformableTransformerDecoder(decoder_layer, num_decoder_layers, return_intermediate_dec)
self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
if two_stage:
self.enc_output = nn.Linear(d_model, d_model)
self.enc_output_norm = nn.LayerNorm(d_model)
self.pos_trans = nn.Linear(d_model * 2, d_model * 2)
self.pos_trans_norm = nn.LayerNorm(d_model * 2)
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MSDeformAttn):
m._reset_parameters()
normal_(self.level_embed)
def get_proposal_pos_embed(self, proposals):
num_pos_feats = 128
temperature = 10000
scale = 2 * math.pi
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=proposals.device)
dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats)
# N, L, 4
proposals = proposals.sigmoid() * scale
# N, L, 4, 128
pos = proposals[:, :, :, None] / dim_t
# N, L, 4, 64, 2
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
return pos
def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes):
N_, S_, C_ = memory.shape
base_scale = 4.0
proposals = []
_cur = 0
for lvl, (H_, W_) in enumerate(spatial_shapes):
mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1)
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device))
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl)
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
proposals.append(proposal)
_cur += (H_ * W_)
output_proposals = torch.cat(proposals, 1)
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
output_proposals = torch.log(output_proposals / (1 - output_proposals))
output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf'))
output_memory = memory
output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
output_memory = self.enc_output_norm(self.enc_output(output_memory))
return output_memory, output_proposals
def get_valid_ratio(self, mask):
_, H, W = mask.shape
valid_H = torch.sum(~mask[:, :, 0], 1)
valid_W = torch.sum(~mask[:, 0, :], 1)
valid_ratio_h = valid_H.float() / H
valid_ratio_w = valid_W.float() / W
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
return valid_ratio
def forward(self, srcs, masks, pos_embeds, query_embed=None, ref_pts=None, mem_bank=None, mem_bank_pad_mask=None, attn_mask=None):
assert self.two_stage or query_embed is not None
# prepare input for encoder
src_flatten = []
mask_flatten = []
lvl_pos_embed_flatten = []
spatial_shapes = []
for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
bs, c, h, w = src.shape
spatial_shape = (h, w)
spatial_shapes.append(spatial_shape)
src = src.flatten(2).transpose(1, 2)
mask = mask.flatten(1)
pos_embed = pos_embed.flatten(2).transpose(1, 2)
lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
lvl_pos_embed_flatten.append(lvl_pos_embed)
src_flatten.append(src)
mask_flatten.append(mask)
src_flatten = torch.cat(src_flatten, 1)
mask_flatten = torch.cat(mask_flatten, 1)
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
# encoder
memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten)
# prepare input for decoder
bs, _, c = memory.shape
if self.two_stage:
output_memory, output_proposals = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes)
# hack implementation for two-stage Deformable DETR
enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory)
enc_outputs_coord_unact = self.decoder.bbox_embed[self.decoder.num_layers](output_memory) + output_proposals
topk = self.two_stage_num_proposals
topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1]
topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
topk_coords_unact = topk_coords_unact.detach()
reference_points = topk_coords_unact.sigmoid()
init_reference_out = reference_points
pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
query_embed, tgt = torch.split(pos_trans_out, c, dim=2)
else:
tgt = query_embed.unsqueeze(0).expand(bs, -1, -1)
reference_points = ref_pts.unsqueeze(0).expand(bs, -1, -1)
init_reference_out = reference_points
# decoder
hs, inter_references = self.decoder(tgt, reference_points, memory,
spatial_shapes, level_start_index,
valid_ratios, mask_flatten,
mem_bank, mem_bank_pad_mask, attn_mask)
inter_references_out = inter_references
if self.two_stage:
return hs, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact
return hs, init_reference_out, inter_references_out, None, None
class DeformableTransformerEncoderLayer(nn.Module):
def __init__(self,
d_model=256, d_ffn=1024,
dropout=0.1, activation="relu",
n_levels=4, n_heads=8, n_points=4, sigmoid_attn=False):
super().__init__()
# self attention
self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points, sigmoid_attn=sigmoid_attn)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation)
self.dropout_relu = ReLUDropout(dropout, True)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout3 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, src):
src2 = self.linear2(self.dropout_relu(self.linear1(src)))
src = src + self.dropout3(src2)
src = self.norm2(src)
return src
def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None):
# self attention
src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask)
src = src + self.dropout1(src2)
src = self.norm1(src)
# ffn
src = self.forward_ffn(src)
return src
class DeformableTransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
@staticmethod
def get_reference_points(spatial_shapes, valid_ratios, device):
reference_points_list = []
for lvl, (H_, W_) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
ref = torch.stack((ref_x, ref_y), -1)
reference_points_list.append(ref)
reference_points = torch.cat(reference_points_list, 1)
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
return reference_points
def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None):
output = src
reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
for _, layer in enumerate(self.layers):
output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask)
return output
class ReLUDropout(torch.nn.Dropout):
def forward(self, input):
return relu_dropout(input, p=self.p, training=self.training, inplace=self.inplace)
def relu_dropout(x, p=0, inplace=False, training=False):
if not training or p == 0:
return x.clamp_(min=0) if inplace else x.clamp(min=0)
mask = (x < 0) | (torch.rand_like(x) > 1 - p)
return x.masked_fill_(mask, 0).div_(1 - p) if inplace else x.masked_fill(mask, 0).div(1 - p)
class DeformableTransformerDecoderLayer(nn.Module):
def __init__(self, d_model=256, d_ffn=1024,
dropout=0.1, activation="relu",
n_levels=4, n_heads=8, n_points=4, self_cross=True, sigmoid_attn=False,
extra_track_attn=False, memory_bank=False):
super().__init__()
self.self_cross = self_cross
self.num_head = n_heads
self.memory_bank = memory_bank
# cross attention
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points, sigmoid_attn=sigmoid_attn)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation)
self.dropout_relu = ReLUDropout(dropout, True)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout4 = nn.Dropout(dropout)
self.norm3 = nn.LayerNorm(d_model)
# memory bank
if self.memory_bank:
self.temporal_attn = nn.MultiheadAttention(d_model, 8, dropout=0)
self.temporal_fc1 = nn.Linear(d_model, d_ffn)
self.temporal_fc2 = nn.Linear(d_ffn, d_model)
self.temporal_norm1 = nn.LayerNorm(d_model)
self.temporal_norm2 = nn.LayerNorm(d_model)
position = torch.arange(5).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(5, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
# update track query_embed
self.extra_track_attn = extra_track_attn
if self.extra_track_attn:
print('Training with Extra Self Attention in Every Decoder.', flush=True)
self.update_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.dropout5 = nn.Dropout(dropout)
self.norm4 = nn.LayerNorm(d_model)
if self_cross:
print('Training with Self-Cross Attention.')
else:
print('Training with Cross-Self Attention.')
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
tgt2 = self.linear2(self.dropout_relu(self.linear1(tgt)))
tgt = tgt + self.dropout4(tgt2)
tgt = self.norm3(tgt)
return tgt
def _forward_self_attn(self, tgt, query_pos, attn_mask=None):
q = k = self.with_pos_embed(tgt, query_pos)
if attn_mask is not None:
tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1),
attn_mask=attn_mask)[0].transpose(0, 1)
else:
tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1))[0].transpose(0, 1)
tgt = tgt + self.dropout2(tgt2)
return self.norm2(tgt)
def _forward_self_cross(self, tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index,
src_padding_mask=None, attn_mask=None):
# self attention
tgt = self._forward_self_attn(tgt, query_pos, attn_mask)
# cross attention
tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos),
reference_points,
src, src_spatial_shapes, level_start_index, src_padding_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# ffn
tgt = self.forward_ffn(tgt)
return tgt
def _forward_cross_self(self, tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index,
src_padding_mask=None, attn_mask=None):
# cross attention
tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos),
reference_points,
src, src_spatial_shapes, level_start_index, src_padding_mask)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# self attention
tgt = self._forward_self_attn(tgt, query_pos, attn_mask)
# ffn
tgt = self.forward_ffn(tgt)
return tgt
def forward(self, tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index, src_padding_mask=None, mem_bank=None, mem_bank_pad_mask=None, attn_mask=None):
if self.self_cross:
return self._forward_self_cross(tgt, query_pos, reference_points, src, src_spatial_shapes,
level_start_index, src_padding_mask, attn_mask)
return self._forward_cross_self(tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index,
src_padding_mask, attn_mask)
def pos2posemb(pos, num_pos_feats=64, temperature=10000):
scale = 2 * math.pi
pos = pos * scale
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device)
dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats)
posemb = pos[..., None] / dim_t
posemb = torch.stack((posemb[..., 0::2].sin(), posemb[..., 1::2].cos()), dim=-1).flatten(-3)
return posemb
class DeformableTransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, return_intermediate=False):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.return_intermediate = return_intermediate
# hack implementation for iterative bounding box refinement and two-stage Deformable DETR
self.bbox_embed = None
self.class_embed = None
def forward(self, tgt, reference_points, src, src_spatial_shapes, src_level_start_index, src_valid_ratios,
src_padding_mask=None, mem_bank=None, mem_bank_pad_mask=None, attn_mask=None):
output = tgt
intermediate = []
intermediate_reference_points = []
for lid, layer in enumerate(self.layers):
if reference_points.shape[-1] == 4:
reference_points_input = reference_points[:, :, None] \
* torch.cat([src_valid_ratios, src_valid_ratios], -1)[:, None]
else:
assert reference_points.shape[-1] == 2
reference_points_input = reference_points[:, :, None] * src_valid_ratios[:, None]
query_pos = pos2posemb(reference_points)
output = layer(output, query_pos, reference_points_input, src, src_spatial_shapes,
src_level_start_index, src_padding_mask, mem_bank, mem_bank_pad_mask, attn_mask)
# hack implementation for iterative bounding box refinement
if self.bbox_embed is not None:
tmp = self.bbox_embed[lid](output)
if reference_points.shape[-1] == 4:
new_reference_points = tmp + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
else:
assert reference_points.shape[-1] == 2
new_reference_points = tmp
new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points)
new_reference_points = new_reference_points.sigmoid()
reference_points = new_reference_points.detach()
if self.return_intermediate:
intermediate.append(output)
intermediate_reference_points.append(reference_points)
if self.return_intermediate:
return torch.stack(intermediate), torch.stack(intermediate_reference_points)
return output, reference_points
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return nn.ReLU(True)
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
def build_deforamble_transformer(args):
return DeformableTransformer(
d_model=args.hidden_dim,
nhead=args.nheads,
num_encoder_layers=args.enc_layers,
num_decoder_layers=args.dec_layers,
dim_feedforward=args.dim_feedforward,
dropout=args.dropout,
activation="relu",
return_intermediate_dec=True,
num_feature_levels=args.num_feature_levels,
dec_n_points=args.dec_n_points,
enc_n_points=args.enc_n_points,
two_stage=args.two_stage,
two_stage_num_proposals=args.num_queries,
decoder_self_cross=not args.decoder_cross_self,
sigmoid_attn=args.sigmoid_attn,
extra_track_attn=args.extra_track_attn,
memory_bank=args.memory_bank_type == 'MemoryBankFeat'
)