|
import cv2 |
|
import numpy as np |
|
import supervision as sv |
|
|
|
import torch |
|
import torchvision |
|
from torchvision.transforms import ToTensor |
|
|
|
from groundingdino.util.inference import Model |
|
|
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py" |
|
GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swint_ogc.pth" |
|
|
|
|
|
grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH) |
|
|
|
|
|
EFFICIENT_SAM_CHECHPOINT_PATH = "./EfficientSAM/efficientsam_s_gpu.jit" |
|
efficientsam = torch.jit.load(EFFICIENT_SAM_CHECHPOINT_PATH) |
|
|
|
|
|
|
|
SOURCE_IMAGE_PATH = "./EfficientSAM/LightHQSAM/example_light_hqsam.png" |
|
CLASSES = ["bench"] |
|
BOX_THRESHOLD = 0.25 |
|
TEXT_THRESHOLD = 0.25 |
|
NMS_THRESHOLD = 0.8 |
|
|
|
|
|
|
|
image = cv2.imread(SOURCE_IMAGE_PATH) |
|
|
|
|
|
detections = grounding_dino_model.predict_with_classes( |
|
image=image, |
|
classes=CLASSES, |
|
box_threshold=BOX_THRESHOLD, |
|
text_threshold=TEXT_THRESHOLD |
|
) |
|
|
|
|
|
box_annotator = sv.BoxAnnotator() |
|
labels = [ |
|
f"{CLASSES[class_id]} {confidence:0.2f}" |
|
for _, _, confidence, class_id, _, _ |
|
in detections] |
|
annotated_frame = box_annotator.annotate(scene=image.copy(), detections=detections, labels=labels) |
|
|
|
|
|
cv2.imwrite("EfficientSAM/LightHQSAM/groundingdino_annotated_image.jpg", annotated_frame) |
|
|
|
|
|
|
|
print(f"Before NMS: {len(detections.xyxy)} boxes") |
|
nms_idx = torchvision.ops.nms( |
|
torch.from_numpy(detections.xyxy), |
|
torch.from_numpy(detections.confidence), |
|
NMS_THRESHOLD |
|
).numpy().tolist() |
|
|
|
detections.xyxy = detections.xyxy[nms_idx] |
|
detections.confidence = detections.confidence[nms_idx] |
|
detections.class_id = detections.class_id[nms_idx] |
|
|
|
print(f"After NMS: {len(detections.xyxy)} boxes") |
|
|
|
|
|
def efficient_sam_box_prompt_segment(image, pts_sampled, model): |
|
bbox = torch.reshape(torch.tensor(pts_sampled), [1, 1, 2, 2]) |
|
bbox_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2]) |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
img_tensor = ToTensor()(image) |
|
|
|
predicted_logits, predicted_iou = model( |
|
img_tensor[None, ...].cuda(), |
|
bbox.cuda(), |
|
bbox_labels.cuda(), |
|
) |
|
predicted_logits = predicted_logits.cpu() |
|
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy() |
|
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy() |
|
|
|
max_predicted_iou = -1 |
|
selected_mask_using_predicted_iou = None |
|
for m in range(all_masks.shape[0]): |
|
curr_predicted_iou = predicted_iou[m] |
|
if ( |
|
curr_predicted_iou > max_predicted_iou |
|
or selected_mask_using_predicted_iou is None |
|
): |
|
max_predicted_iou = curr_predicted_iou |
|
selected_mask_using_predicted_iou = all_masks[m] |
|
return selected_mask_using_predicted_iou |
|
|
|
|
|
|
|
result_masks = [] |
|
for box in detections.xyxy: |
|
mask = efficient_sam_box_prompt_segment(image, box, efficientsam) |
|
result_masks.append(mask) |
|
|
|
detections.mask = np.array(result_masks) |
|
|
|
|
|
box_annotator = sv.BoxAnnotator() |
|
mask_annotator = sv.MaskAnnotator() |
|
labels = [ |
|
f"{CLASSES[class_id]} {confidence:0.2f}" |
|
for _, _, confidence, class_id, _, _ |
|
in detections] |
|
annotated_image = mask_annotator.annotate(scene=image.copy(), detections=detections) |
|
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections, labels=labels) |
|
|
|
|
|
cv2.imwrite("EfficientSAM/gronded_efficient_sam_anontated_image.jpg", annotated_image) |
|
|