Spaces:
Runtime error
Runtime error
Add column to data
Browse files
app.py
CHANGED
|
@@ -196,20 +196,16 @@ with gr.Blocks(title='3D Animation Arena', head=head, css_paths='static/style.cs
|
|
| 196 |
- GVHMR (https://github.com/zju3dv/GVHMR)
|
| 197 |
- HybrIK (https://github.com/jeffffffli/HybrIK)
|
| 198 |
- WHAM (https://github.com/yohanshin/WHAM)
|
| 199 |
-
- CameraHMR (https://github.com/pixelite1201/CameraHMR)
|
| 200 |
-
- STAF (https://github.com/yw0208/STAF)
|
| 201 |
-
- TokenHMR (https://github.com/saidwivedi/TokenHMR)
|
| 202 |
|
| 203 |
All inferences are precomputed following the code in the associated GitHub repository.
|
| 204 |
Some post-inference modifications have been made to some models in order to make the comparison possible.
|
| 205 |
These modifications include:
|
| 206 |
* Adjusting height to a common ground
|
| 207 |
* Fixing the root depth of certain models, when depth was extremely jittery
|
|
|
|
| 208 |
|
| 209 |
All models use the SMPL body model to discard the influence of the body model on the comparison.
|
| 210 |
These choices were made without any intention to favor or harm any model.
|
| 211 |
-
|
| 212 |
-
The videos were selected to tests models on a large variety of motions, don't hesitate to send me your videos if you want to have it uploaded in the arena!
|
| 213 |
All matchups are generated randomly, don't hesitate to rate the same videos multiple times as the matchups will probably be different!
|
| 214 |
|
| 215 |
---
|
|
@@ -307,6 +303,7 @@ with gr.Blocks(title='3D Animation Arena', head=head, css_paths='static/style.cs
|
|
| 307 |
async def process_rating(state, i, criteria):
|
| 308 |
return gr.update(value=await submit_rating(
|
| 309 |
criteria=criteria,
|
|
|
|
| 310 |
winner=state['modelLeft'] if i == 0 else state['modelRight'] if i == 2 else None,
|
| 311 |
loser=state['modelRight'] if i == 0 else state['modelLeft'] if i == 2 else None,
|
| 312 |
uuid=state['uuid']
|
|
|
|
| 196 |
- GVHMR (https://github.com/zju3dv/GVHMR)
|
| 197 |
- HybrIK (https://github.com/jeffffffli/HybrIK)
|
| 198 |
- WHAM (https://github.com/yohanshin/WHAM)
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
All inferences are precomputed following the code in the associated GitHub repository.
|
| 201 |
Some post-inference modifications have been made to some models in order to make the comparison possible.
|
| 202 |
These modifications include:
|
| 203 |
* Adjusting height to a common ground
|
| 204 |
* Fixing the root depth of certain models, when depth was extremely jittery
|
| 205 |
+
* Fixing the root position of certain models, when no root position was available
|
| 206 |
|
| 207 |
All models use the SMPL body model to discard the influence of the body model on the comparison.
|
| 208 |
These choices were made without any intention to favor or harm any model.
|
|
|
|
|
|
|
| 209 |
All matchups are generated randomly, don't hesitate to rate the same videos multiple times as the matchups will probably be different!
|
| 210 |
|
| 211 |
---
|
|
|
|
| 303 |
async def process_rating(state, i, criteria):
|
| 304 |
return gr.update(value=await submit_rating(
|
| 305 |
criteria=criteria,
|
| 306 |
+
video=state['video'],
|
| 307 |
winner=state['modelLeft'] if i == 0 else state['modelRight'] if i == 2 else None,
|
| 308 |
loser=state['modelRight'] if i == 0 else state['modelLeft'] if i == 2 else None,
|
| 309 |
uuid=state['uuid']
|
utils.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import time
|
| 5 |
+
import asyncio
|
| 6 |
+
from utils.s3_utils import write_to_s3
|
| 7 |
+
from utils.data_utils import generate_leaderboard, generate_data
|
| 8 |
+
|
| 9 |
+
submit_lock = asyncio.Lock()
|
| 10 |
+
|
| 11 |
+
def update_ratings(R_win : int, R_lose : int, k : int = 32) -> Tuple[int, int]:
|
| 12 |
+
"""
|
| 13 |
+
Update the ratings of two players after a match.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
R_win (int): The rating of the winning player.
|
| 17 |
+
R_lose (int): The rating of the losing player.
|
| 18 |
+
k (int, optional): The k-factor. Defaults to 32.
|
| 19 |
+
|
| 20 |
+
Returns:
|
| 21 |
+
Tuple[int, int]: The updated ratings of the winning and losing players.
|
| 22 |
+
"""
|
| 23 |
+
E_win = 1 / (1 + 10 ** ((R_lose - R_win) / 480))
|
| 24 |
+
E_lose = 1 / (1 + 10 ** ((R_win - R_lose) / 480))
|
| 25 |
+
return int(R_win + k * (1 - E_win)), int(R_lose + k * (0 - E_lose))
|
| 26 |
+
|
| 27 |
+
def generate_matchup(leaderboard : pd.DataFrame, beta : int) -> tuple[str, str]:
|
| 28 |
+
"""
|
| 29 |
+
Generate a pseudo-random matchup between two models.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
leaderboard (pd.DataFrame): The leaderboard of models
|
| 33 |
+
beta (int): The damping factor for the Elo update.
|
| 34 |
+
|
| 35 |
+
Returns:
|
| 36 |
+
model1 (str): The first model.
|
| 37 |
+
model2 (str): The second model.
|
| 38 |
+
"""
|
| 39 |
+
if leaderboard['Matches'].sum() == 0:
|
| 40 |
+
return np.random.choice(leaderboard.index, 2, replace=False)
|
| 41 |
+
weights = [np.exp(-leaderboard.at[model, 'Matches'] / beta) for model in leaderboard.index]
|
| 42 |
+
weights = weights / np.sum(weights) # Normalize weights
|
| 43 |
+
selected = np.random.choice(leaderboard.index, 2, replace=False, p=weights)
|
| 44 |
+
np.random.shuffle(selected)
|
| 45 |
+
model1, model2 = selected
|
| 46 |
+
return model1, model2
|
| 47 |
+
|
| 48 |
+
async def simulate(iter : int, beta : int, criteria : str) -> pd.DataFrame:
|
| 49 |
+
"""
|
| 50 |
+
Simulate matches between random models.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
iter (int): The number of matches to simulate.
|
| 54 |
+
beta (int): The damping factor for the Elo update.
|
| 55 |
+
criteria (str): The criteria for the rating.
|
| 56 |
+
|
| 57 |
+
Returns:
|
| 58 |
+
leaderboard (pd.DataFrame): Updated leaderboard after simulation
|
| 59 |
+
"""
|
| 60 |
+
data = await generate_data()
|
| 61 |
+
|
| 62 |
+
leaderboard = await generate_leaderboard(criteria)
|
| 63 |
+
leaderboard.set_index('Model', inplace=True)
|
| 64 |
+
|
| 65 |
+
for _ in range(iter):
|
| 66 |
+
# Generate random matchups
|
| 67 |
+
timestamp = time.time()
|
| 68 |
+
model1, model2 = generate_matchup(leaderboard, beta)
|
| 69 |
+
R1, R2 = leaderboard.at[model1, 'Elo'], leaderboard.at[model2, 'Elo']
|
| 70 |
+
R1_new, R2_new = update_ratings(R1, R2)
|
| 71 |
+
|
| 72 |
+
# Update leaderboard
|
| 73 |
+
leaderboard.at[model1, 'Elo'], leaderboard.at[model2, 'Elo'] = R1_new, R2_new
|
| 74 |
+
leaderboard.at[model1, 'Wins'] += 1
|
| 75 |
+
leaderboard.at[model1, 'Matches'] += 1
|
| 76 |
+
leaderboard.at[model2, 'Matches'] += 1
|
| 77 |
+
leaderboard.at[model1, 'Win Rate'] = np.round(leaderboard.at[model1, 'Wins'] / leaderboard.at[model1, 'Matches'], 2)
|
| 78 |
+
leaderboard.at[model2, 'Win Rate'] = np.round(leaderboard.at[model2, 'Wins'] / leaderboard.at[model2, 'Matches'], 2)
|
| 79 |
+
|
| 80 |
+
# Save match data
|
| 81 |
+
data.loc[len(data)] = {
|
| 82 |
+
'Criteria': criteria,
|
| 83 |
+
'Model': model1,
|
| 84 |
+
'Opponent': model2,
|
| 85 |
+
'Won': True,
|
| 86 |
+
'Elo': leaderboard.at[model1, 'Elo'],
|
| 87 |
+
'Win Rate': leaderboard.at[model1, 'Win Rate'],
|
| 88 |
+
'Matches': leaderboard.at[model1, 'Matches'],
|
| 89 |
+
'Timestamp': timestamp,
|
| 90 |
+
'UUID': None
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
data.loc[len(data)] = {
|
| 94 |
+
'Criteria': criteria,
|
| 95 |
+
'Model': model2,
|
| 96 |
+
'Opponent': model1,
|
| 97 |
+
'Won': False,
|
| 98 |
+
'Elo': leaderboard.at[model2, 'Elo'],
|
| 99 |
+
'Win Rate': leaderboard.at[model2, 'Win Rate'],
|
| 100 |
+
'Matches': leaderboard.at[model2, 'Matches'],
|
| 101 |
+
'Timestamp': timestamp,
|
| 102 |
+
'UUID': None
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
leaderboard = leaderboard.sort_values('Elo', ascending=False).reset_index(drop=False)
|
| 106 |
+
|
| 107 |
+
await asyncio.gather(
|
| 108 |
+
write_to_s3(f'leaderboard_{criteria}.csv', leaderboard),
|
| 109 |
+
write_to_s3('data.csv', data)
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
return leaderboard
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
async def submit_rating(criteria : str, video : str, winner : str, loser : str, uuid : str) -> None:
|
| 116 |
+
"""
|
| 117 |
+
Submit a rating for a match.
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
criteria (str): The criteria for the rating.
|
| 121 |
+
winner (str): The winning model.
|
| 122 |
+
loser (str): The losing model.
|
| 123 |
+
uuid (str): The UUID of the session.
|
| 124 |
+
"""
|
| 125 |
+
async with submit_lock:
|
| 126 |
+
data = await generate_data()
|
| 127 |
+
|
| 128 |
+
leaderboard = await generate_leaderboard(criteria)
|
| 129 |
+
leaderboard.set_index('Model', inplace=True)
|
| 130 |
+
|
| 131 |
+
if winner is None or loser is None or video is None:
|
| 132 |
+
return leaderboard
|
| 133 |
+
|
| 134 |
+
timestamp = time.time()
|
| 135 |
+
R_win, R_lose = leaderboard.at[winner, 'Elo'], leaderboard.at[loser, 'Elo']
|
| 136 |
+
R_win_new, R_lose_new = update_ratings(R_win, R_lose)
|
| 137 |
+
|
| 138 |
+
# Update leaderboard
|
| 139 |
+
leaderboard.loc[[winner, loser], 'Elo'] = [R_win_new, R_lose_new]
|
| 140 |
+
leaderboard.at[winner, 'Wins'] += 1
|
| 141 |
+
leaderboard.loc[[winner, loser], 'Matches'] += [1, 1]
|
| 142 |
+
leaderboard.loc[[winner, loser], 'Win Rate'] = (
|
| 143 |
+
leaderboard.loc[[winner, loser], 'Wins'] / leaderboard.loc[[winner, loser], 'Matches']
|
| 144 |
+
).apply(lambda x: round(x, 2))
|
| 145 |
+
|
| 146 |
+
# Save match data
|
| 147 |
+
data.loc[len(data)] = {
|
| 148 |
+
'Criteria': criteria,
|
| 149 |
+
'Model': winner,
|
| 150 |
+
'Opponent': loser,
|
| 151 |
+
'Won': True,
|
| 152 |
+
'Elo': leaderboard.at[winner, 'Elo'],
|
| 153 |
+
'Win Rate': leaderboard.at[winner, 'Win Rate'],
|
| 154 |
+
'Matches': leaderboard.at[winner, 'Matches'],
|
| 155 |
+
'Video': video,
|
| 156 |
+
'Timestamp': timestamp,
|
| 157 |
+
'UUID': uuid
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
data.loc[len(data)] = {
|
| 161 |
+
'Criteria': criteria,
|
| 162 |
+
'Model': loser,
|
| 163 |
+
'Opponent': winner,
|
| 164 |
+
'Won': False,
|
| 165 |
+
'Elo': leaderboard.at[loser, 'Elo'],
|
| 166 |
+
'Win Rate': leaderboard.at[loser, 'Win Rate'],
|
| 167 |
+
'Matches': leaderboard.at[loser, 'Matches'],
|
| 168 |
+
'Video': video,
|
| 169 |
+
'Timestamp': timestamp,
|
| 170 |
+
'UUID': uuid
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
leaderboard = leaderboard.sort_values('Elo', ascending=False).reset_index(drop=False)
|
| 174 |
+
await asyncio.gather(
|
| 175 |
+
write_to_s3(f'leaderboard_{criteria}.csv', leaderboard),
|
| 176 |
+
write_to_s3('data.csv', data)
|
| 177 |
+
)
|
| 178 |
+
return leaderboard
|