Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
from collections import namedtuple | |
from torchvision.models import vgg16, VGG16_Weights | |
class VGG16(nn.Module): | |
def __init__(self, requires_grad=False): | |
super(VGG16, self).__init__() | |
weights = VGG16_Weights.DEFAULT | |
vgg_pretrained_features = vgg16(weights=weights).features | |
self.slice1 = nn.Sequential() | |
self.slice2 = nn.Sequential() | |
self.slice3 = nn.Sequential() | |
self.slice4 = nn.Sequential() | |
for x in range(4): | |
self.slice1.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(4, 9): | |
self.slice2.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(9, 16): | |
self.slice3.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(16, 23): | |
self.slice4.add_module(str(x), vgg_pretrained_features[x]) | |
if not requires_grad: | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, X): | |
h = self.slice1(X) | |
h_relu1_2 = h | |
h = self.slice2(h) | |
h_relu2_2 = h | |
h = self.slice3(h) | |
h_relu3_3 = h | |
h = self.slice4(h) | |
h_relu4_3 = h | |
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3']) | |
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3) | |
return out | |