Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
class Residual_block(nn.Module): | |
"""Residual block | |
Architecture: https://arxiv.org/pdf/1610.02915.pdf | |
""" | |
def __init__(self, channel): | |
super(Residual_block, self).__init__() | |
self.conv_1 = nn.Conv2d(in_channels=channel, out_channels=channel, | |
padding='same', kernel_size=3, stride=1) | |
self.inst1 = nn.InstanceNorm2d(channel, affine=True) | |
self.conv_2 = nn.Conv2d(in_channels=channel, out_channels=channel, | |
padding='same', kernel_size=3, stride=1) | |
self.inst2 = nn.InstanceNorm2d(channel, affine=True) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
residual = x | |
out = self.relu(self.inst1(self.conv_1(x))) | |
out = self.inst2(self.conv_2(out)) | |
return self.relu(out + residual) | |
class TransformerNet(nn.Module): | |
def __init__(self): | |
super(TransformerNet, self).__init__() | |
# Downsampling | |
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=9, stride=1, padding = 9//2) | |
self.BN_1 = nn.InstanceNorm2d(num_features=32, affine=True) | |
self.down_1 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding = 1) | |
self.BN_2 = nn.InstanceNorm2d(num_features=64, affine=True) | |
self.down_2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding = 1) | |
self.BN_3 = nn.InstanceNorm2d(num_features=128, affine=True) | |
# Residual connect | |
self.res_1 = Residual_block(128) | |
self.res_2 = Residual_block(128) | |
self.res_3 = Residual_block(128) | |
self.res_4 = Residual_block(128) | |
self.res_5 = Residual_block(128) | |
# Upsampling | |
self.up_1 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1, output_padding= 1) | |
self.BN_4 = nn.InstanceNorm2d(num_features=64, affine=True) | |
self.up_2 = nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=3, stride=2, padding = 1, output_padding= 1) | |
self.BN_5 = nn.InstanceNorm2d(num_features=32, affine=True) | |
self.conv2 = nn.Conv2d(in_channels=32, out_channels=3, kernel_size=9, stride=1, padding = 9//2) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
y = self.relu(self.BN_1(self.conv1(x))) | |
# print(y.shape) | |
y = self.relu(self.BN_2(self.down_1(y))) | |
# print(y.shape) | |
y = self.relu(self.BN_3(self.down_2(y))) | |
# print(y.shape) | |
# print() | |
y = self.res_1(y) | |
# print(y.shape) | |
y = self.res_2(y) | |
# print(y.shape) | |
y = self.res_3(y) | |
# print(y.shape) | |
y = self.res_4(y) | |
# print(y.shape) | |
y = self.res_5(y) | |
# print(y.shape) | |
# print() | |
y = self.relu(self.BN_4(self.up_1(y))) | |
# print(y.shape) | |
y = self.relu(self.BN_5(self.up_2(y))) | |
# print(y.shape) | |
y = self.conv2(y) | |
# print(y.shape) | |
return y | |