|
import streamlit as st |
|
import numpy as np |
|
import pickle |
|
import streamlit.components.v1 as components |
|
from sklearn.feature_extraction.text import CountVectorizer |
|
from sklearn.model_selection import train_test_split |
|
import pandas as pd |
|
import nltk |
|
import re |
|
nltk.download('stopwords') |
|
stemmer = nltk.SnowballStemmer("english") |
|
from nltk.corpus import stopwords |
|
import string |
|
stopword=set(stopwords.words('english')) |
|
|
|
df = pd.read_csv('stress.csv') |
|
|
|
def clean(text): |
|
text = str(text).lower() |
|
text = re.sub('\[.*?\]', '', text) |
|
text = re.sub('https?://\S+|www\.\S+', '', text) |
|
text = re.sub('<.*?>+', '', text) |
|
text = re.sub('[%s]' % re.escape(string.punctuation), '', text) |
|
text = re.sub('\n', '', text) |
|
text = re.sub('\w*\d\w*', '', text) |
|
text = [word for word in text.split(' ') if word not in stopword] |
|
text=" ".join(text) |
|
text = [stemmer.stem(word) for word in text.split(' ')] |
|
text=" ".join(text) |
|
return text |
|
|
|
|
|
df["text"] = df["text"].apply(clean) |
|
X = np.array(df["text"]) |
|
|
|
|
|
y = np.array(df["label"]) |
|
|
|
|
|
|
|
df["text"] = df["text"].apply(clean) |
|
|
|
cv = CountVectorizer() |
|
|
|
|
|
X = cv.fit_transform(X) |
|
X_train, X_test, y_train, y_test = train_test_split(X, y, |
|
test_size=0.33, |
|
random_state=42) |
|
|
|
|
|
def model_prediction(features): |
|
features = cv.transform([features]).toarray() |
|
pickled_model = pickle.load(open('Stress_Detection_BernoulliNB.pkl', 'rb')) |
|
Message = str(list(pickled_model.predict(features))) |
|
|
|
return Message |
|
|
|
def app_design(): |
|
|
|
image = '36.png' |
|
st.image(image, use_column_width=True) |
|
|
|
st.subheader("Enter the following values:") |
|
|
|
text= st.text_input("Enter your message") |
|
|
|
features = text |
|
|
|
|
|
if st.button('Predict Stress'): |
|
predicted_value = model_prediction(features) |
|
if predicted_value == "['Stress']": |
|
st.success("Your message contains Stress") |
|
elif predicted_value == "['No Stress']": |
|
st.success("Your message doesnot contains Stress") |
|
|
|
|
|
|
|
def about_hidevs(): |
|
|
|
components.html(""" |
|
<div> |
|
<h4>🚀 Unlock Your Dream Job with HiDevs Community!</h4> |
|
<p class="subtitle">🔍 Seeking the perfect job? HiDevs Community is your gateway to career success in the tech industry. Explore free expert courses, job-seeking support, and career transformation tips.</p> |
|
<p class="subtitle">💼 We offer an upskill program in <b>Gen AI, Data Science, Machine Learning</b>, and assist startups in adopting <b>Gen AI</b> at minimal development costs.</p> |
|
<p class="subtitle">🆓 Best of all, everything we offer is <b>completely free</b>! We are dedicated to helping society.</p> |
|
<p class="subtitle">Book free of cost 1:1 mentorship on any topic of your choice — <a class="link" href="https://topmate.io/deepakchawla1307">topmate</a></p> |
|
<p class="subtitle">✨ We dedicate over 30 minutes to each applicant’s resume, LinkedIn profile, mock interview, and upskill program. If you’d like our guidance, check out our services <a class="link" href="https://hidevscommunity.wixsite.com/hidevs">here</a></p> |
|
<p class="subtitle">💡 Join us now, and turbocharge your career!</p> |
|
<p class="subtitle"><a class="link" href="https://hidevscommunity.wixsite.com/hidevs" target="__blank">Website</a> |
|
<a class="link" href="https://www.youtube.com/@HidevsCommunity1307/" target="__blank">YouTube</a> |
|
<a class="link" href="https://www.instagram.com/hidevs_community/" target="__blank">Instagram</a> |
|
<a class="link" href="https://medium.com/@hidevscommunity" target="__blank">Medium</a> |
|
<a class="link" href="https://www.linkedin.com/company/hidevs-community/" target="__blank">LinkedIn</a> |
|
<a class="link" href="https://github.com/hidevscommunity" target="__blank">GitHub</a></p> |
|
</div> |
|
""", |
|
height=600) |
|
|
|
def main(): |
|
|
|
|
|
st.set_page_config( |
|
page_title="Stress Detection", |
|
page_icon=":chart_with_upwards_trend:", |
|
) |
|
|
|
st.title("Welcome to our Stress Detection App!") |
|
|
|
app_design() |
|
st.header("About HiDevs Community") |
|
about_hidevs() |
|
|
|
if __name__ == '__main__': |
|
main() |