|
import logging |
|
import os |
|
import shlex |
|
import subprocess |
|
import tempfile |
|
import time |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import rembg |
|
import spaces |
|
import torch |
|
from PIL import Image |
|
from functools import partial |
|
|
|
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl')) |
|
|
|
from tsr.system import TSR |
|
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation |
|
|
|
|
|
HEADER = """ |
|
** ARM <3 GoldExtra ** - 3D extrapolation from 2.5D images |
|
|
|
--> 2.5D Bild hochladen und BG-Preprocessing aktivieren! |
|
""" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda:0" |
|
else: |
|
device = "cpu" |
|
|
|
model = TSR.from_pretrained( |
|
"stabilityai/TripoSR", |
|
config_name="config.yaml", |
|
weight_name="model.ckpt", |
|
) |
|
model.renderer.set_chunk_size(131072) |
|
model.to(device) |
|
|
|
rembg_session = rembg.new_session() |
|
|
|
|
|
def check_input_image(input_image): |
|
if input_image is None: |
|
raise gr.Error("No image uploaded!") |
|
|
|
|
|
def preprocess(input_image, do_remove_background, foreground_ratio): |
|
def fill_background(image): |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5 |
|
image = Image.fromarray((image * 255.0).astype(np.uint8)) |
|
return image |
|
|
|
if do_remove_background: |
|
image = input_image.convert("RGB") |
|
image = remove_background(image, rembg_session) |
|
image = resize_foreground(image, foreground_ratio) |
|
image = fill_background(image) |
|
else: |
|
image = input_image |
|
if image.mode == "RGBA": |
|
image = fill_background(image) |
|
return image |
|
|
|
|
|
@spaces.GPU |
|
def generate(image, mc_resolution, formats=["obj", "glb"]): |
|
scene_codes = model(image, device=device) |
|
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0] |
|
mesh = to_gradio_3d_orientation(mesh) |
|
|
|
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False) |
|
mesh.export(mesh_path_glb.name) |
|
|
|
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False) |
|
mesh.apply_scale([-1, 1, 1]) |
|
mesh.export(mesh_path_obj.name) |
|
|
|
return mesh_path_obj.name, mesh_path_glb.name |
|
|
|
def run_example(image_pil): |
|
preprocessed = preprocess(image_pil, False, 0.9) |
|
mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "glb"]) |
|
return preprocessed, mesh_name_obj, mesh_name_glb |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(HEADER) |
|
with gr.Row(variant="panel"): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input_image = gr.Image( |
|
label="Input Image", |
|
image_mode="RGBA", |
|
sources="upload", |
|
type="pil", |
|
elem_id="content_image", |
|
) |
|
processed_image = gr.Image(label="Preprocess uWu", interactive=False) |
|
with gr.Row(): |
|
with gr.Group(): |
|
do_remove_background = gr.Checkbox( |
|
label="Hintergrund entfernen", value=True |
|
) |
|
foreground_ratio = gr.Slider( |
|
label="Vordergrund definieren", |
|
minimum=0.5, |
|
maximum=1.0, |
|
value=0.85, |
|
step=0.05, |
|
) |
|
mc_resolution = gr.Slider( |
|
label="MC-Qualität (optional)", |
|
minimum=32, |
|
maximum=320, |
|
value=256, |
|
step=32 |
|
) |
|
with gr.Row(): |
|
submit = gr.Button("Simsalabim", elem_id="generate", variant="primary") |
|
with gr.Column(): |
|
with gr.Tab("OBJ"): |
|
output_model_obj = gr.Model3D( |
|
label="Output Model (OBJ Format)", |
|
interactive=False, |
|
) |
|
gr.Markdown(".obj muss gedreht werden! .glb sollte passen. Test this!") |
|
with gr.Tab("GLB"): |
|
output_model_glb = gr.Model3D( |
|
label="Output Model (GLB Format)", |
|
interactive=False, |
|
) |
|
gr.Markdown("GLB erwartet bereits das lighting vom ARM.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
submit.click(fn=check_input_image, inputs=[input_image]).success( |
|
fn=preprocess, |
|
inputs=[input_image, do_remove_background, foreground_ratio], |
|
outputs=[processed_image], |
|
).success( |
|
fn=generate, |
|
inputs=[processed_image, mc_resolution], |
|
outputs=[output_model_obj, output_model_glb], |
|
) |
|
|
|
demo.queue(max_size=10) |
|
demo.launch() |
|
|