Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
from fastapi import FastAPI, Request
|
| 2 |
-
from transformers import AutoTokenizer
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
import torch
|
| 5 |
import pickle
|
| 6 |
import os
|
| 7 |
-
import psutil
|
| 8 |
import sys
|
|
|
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
device = torch.device("cpu")
|
|
@@ -16,22 +16,27 @@ try:
|
|
| 16 |
category = pickle.load(f)
|
| 17 |
print("β
category.pkl λ‘λ μ±κ³΅.")
|
| 18 |
except FileNotFoundError:
|
| 19 |
-
print("β Error: category.pkl νμΌμ μ°Ύμ μ μμ΅λλ€.
|
| 20 |
sys.exit(1)
|
| 21 |
|
| 22 |
# ν ν¬λμ΄μ λ‘λ
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained("skt/kobert-base-v1")
|
| 24 |
print("β
ν ν¬λμ΄μ λ‘λ μ±κ³΅.")
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
HF_MODEL_REPO_ID = "hiddenFront/TextClassifier"
|
| 27 |
HF_MODEL_FILENAME = "textClassifierModel.pt"
|
| 28 |
|
| 29 |
-
# λ©λͺ¨λ¦¬
|
| 30 |
process = psutil.Process(os.getpid())
|
| 31 |
mem_before = process.memory_info().rss / (1024 * 1024)
|
| 32 |
print(f"π¦ λͺ¨λΈ λ€μ΄λ‘λ μ λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_before:.2f} MB")
|
| 33 |
|
| 34 |
-
# λͺ¨λΈ λ€μ΄λ‘λ
|
| 35 |
try:
|
| 36 |
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=HF_MODEL_FILENAME)
|
| 37 |
print(f"β
λͺ¨λΈ νμΌ λ€μ΄λ‘λ μ±κ³΅: {model_path}")
|
|
@@ -39,14 +44,16 @@ try:
|
|
| 39 |
mem_after_dl = process.memory_info().rss / (1024 * 1024)
|
| 40 |
print(f"π¦ λͺ¨λΈ λ€μ΄λ‘λ ν λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_after_dl:.2f} MB")
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
model.eval()
|
| 44 |
|
| 45 |
mem_after_load = process.memory_info().rss / (1024 * 1024)
|
| 46 |
print(f"π¦ λͺ¨λΈ λ‘λ ν λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_after_load:.2f} MB")
|
| 47 |
-
print("β
λͺ¨λΈ λ‘λ
|
| 48 |
except Exception as e:
|
| 49 |
-
print(f"β Error: λͺ¨λΈ
|
| 50 |
sys.exit(1)
|
| 51 |
|
| 52 |
# μμΈ‘ API
|
|
|
|
| 1 |
from fastapi import FastAPI, Request
|
| 2 |
+
from transformers import BertForSequenceClassification, AutoTokenizer
|
| 3 |
from huggingface_hub import hf_hub_download
|
| 4 |
import torch
|
| 5 |
import pickle
|
| 6 |
import os
|
|
|
|
| 7 |
import sys
|
| 8 |
+
import psutil
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
device = torch.device("cpu")
|
|
|
|
| 16 |
category = pickle.load(f)
|
| 17 |
print("β
category.pkl λ‘λ μ±κ³΅.")
|
| 18 |
except FileNotFoundError:
|
| 19 |
+
print("β Error: category.pkl νμΌμ μ°Ύμ μ μμ΅λλ€.")
|
| 20 |
sys.exit(1)
|
| 21 |
|
| 22 |
# ν ν¬λμ΄μ λ‘λ
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained("skt/kobert-base-v1")
|
| 24 |
print("β
ν ν¬λμ΄μ λ‘λ μ±κ³΅.")
|
| 25 |
|
| 26 |
+
# λͺ¨λΈ ꡬ쑰 μ¬μ μ
|
| 27 |
+
num_labels = len(category) # λΆλ₯ν ν΄λμ€ μμ λ°λΌ
|
| 28 |
+
model = BertForSequenceClassification.from_pretrained("skt/kobert-base-v1", num_labels=num_labels)
|
| 29 |
+
model.to(device)
|
| 30 |
+
|
| 31 |
HF_MODEL_REPO_ID = "hiddenFront/TextClassifier"
|
| 32 |
HF_MODEL_FILENAME = "textClassifierModel.pt"
|
| 33 |
|
| 34 |
+
# λ©λͺ¨λ¦¬ μΈ‘μ μ
|
| 35 |
process = psutil.Process(os.getpid())
|
| 36 |
mem_before = process.memory_info().rss / (1024 * 1024)
|
| 37 |
print(f"π¦ λͺ¨λΈ λ€μ΄λ‘λ μ λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_before:.2f} MB")
|
| 38 |
|
| 39 |
+
# λͺ¨λΈ κ°μ€μΉ λ€μ΄λ‘λ
|
| 40 |
try:
|
| 41 |
model_path = hf_hub_download(repo_id=HF_MODEL_REPO_ID, filename=HF_MODEL_FILENAME)
|
| 42 |
print(f"β
λͺ¨λΈ νμΌ λ€μ΄λ‘λ μ±κ³΅: {model_path}")
|
|
|
|
| 44 |
mem_after_dl = process.memory_info().rss / (1024 * 1024)
|
| 45 |
print(f"π¦ λͺ¨λΈ λ€μ΄λ‘λ ν λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_after_dl:.2f} MB")
|
| 46 |
|
| 47 |
+
# state_dict λ‘λ
|
| 48 |
+
state_dict = torch.load(model_path, map_location=device)
|
| 49 |
+
model.load_state_dict(state_dict)
|
| 50 |
model.eval()
|
| 51 |
|
| 52 |
mem_after_load = process.memory_info().rss / (1024 * 1024)
|
| 53 |
print(f"π¦ λͺ¨λΈ λ‘λ ν λ©λͺ¨λ¦¬ μ¬μ©λ: {mem_after_load:.2f} MB")
|
| 54 |
+
print("β
λͺ¨λΈ λ‘λ λ° μ€λΉ μλ£.")
|
| 55 |
except Exception as e:
|
| 56 |
+
print(f"β Error: λͺ¨λΈ λ‘λ μ€ μ€λ₯ λ°μ: {e}")
|
| 57 |
sys.exit(1)
|
| 58 |
|
| 59 |
# μμΈ‘ API
|