Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
import pickle | |
# Load model, including its weights and the optimizer | |
model = tf.keras.models.load_model('core4.h5') | |
# load tokenizer | |
with open('tokenizer.pickle', 'rb') as handle: | |
tokenize = pickle.load(handle) | |
text_labels = ['How to apply', 'how much can I get', 'who can apply'] | |
# model.summary() # model architecture | |
def greet(string): | |
tokenizedText = tokenize.texts_to_matrix([string]) | |
prediction = model.predict(np.array([tokenizedText[0]])) | |
predicted_label = text_labels[np.argmax(prediction)] | |
print(prediction[0][np.argmax(prediction)]) | |
print("Predicted label: " + predicted_label + "\n") | |
################### | |
import requests as rs | |
import pandas as pd | |
spreadsheet_id = '1vjWnYsnGc0J6snT67NVbA-NWSGZ5b0eDBVHmg9lbf9s' # Please set the Spreadsheet ID. | |
csv_url='https://docs.google.com/spreadsheets/d/' + spreadsheet_id + '/export?format=csv&id=' + spreadsheet_id + '&gid=0' | |
res=rs.get(url=csv_url) | |
open('google.csv', 'wb').write(res.content) | |
df = pd.read_csv('google.csv') | |
import json | |
import requests | |
spreadsheet_id = '1vjWnYsnGc0J6snT67NVbA-NWSGZ5b0eDBVHmg9lbf9s' # Please set the Spreadsheet ID. | |
url = 'https://script.google.com/macros/s/AKfycbwXP5fsDgOXJ9biZQC293o6bTBL3kDOJ07PlmxKjabzdTej6WYdC8Yos6NpDVqAJeVM/exec?spreadsheetId=' + spreadsheet_id | |
body = { | |
"arguments": {"range": "Sheet1!A"+str(len(df)+2), "valueInputOption": "USER_ENTERED"}, | |
"body": {"values": [[string]]} | |
} | |
res = requests.post(url, json.dumps(body), headers={'Content-Type': 'application/json'}) | |
body = { | |
"arguments": {"range": "Sheet1!B"+str(len(df)+2), "valueInputOption": "USER_ENTERED"}, | |
"body": {"values": [[predicted_label]]} | |
} | |
res = requests.post(url, json.dumps(body), headers={'Content-Type': 'application/json'}) | |
import datetime | |
current_time = datetime.datetime.now() | |
body = { | |
"arguments": {"range": "Sheet1!D"+str(len(df)+2), "valueInputOption": "USER_ENTERED"}, | |
"body": {"values": [[str(current_time)]]} | |
} | |
res = requests.post(url, json.dumps(body), headers={'Content-Type': 'application/json'}) | |
#print(res.text) | |
####################### | |
return predicted_label | |
#One testing case | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
iface.launch() |