Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import altair as alt | |
import plotly.express as px | |
import numpy as np | |
from PIL import Image | |
from prophet import Prophet | |
from datetime import date | |
from utils import load_data_pickle, check_password | |
from sklearn.metrics import root_mean_squared_error | |
from st_pages import add_indentation | |
st.set_page_config(layout="wide") | |
#add_indentation() | |
def forecast_prophet(train, test, col=None): | |
model = Prophet(daily_seasonality=False) | |
for col in select_add_var: | |
model.add_regressor(col) | |
model.fit(train) | |
forecast = model.predict(test) | |
return model, forecast | |
###################################### TITLE #################################### | |
if check_password(): | |
st.markdown("# Time Series Forecasting π") | |
st.markdown("### What is Time Series Forecasting ?") | |
st.info("""Time series forecasting models are AI models built to make predictions about future values using historical data. | |
These types of models take into account temporal patterns, such as **trends** (long-term movements), **seasonality** (repeating patterns at fixed intervals), and **cyclic patterns** (repeating patterns not necessarily at fixed intervals)""") | |
#unsafe_allow_html=True) | |
st.markdown(" ") | |
image_ts = Image.open('images/ts_patterns.png') | |
_, col, _ = st.columns([0.15,0.7,0.15]) | |
with col: | |
st.image(image_ts) | |
st.markdown(" ") | |
st.markdown("""Real-life applications of time series forecasting include: | |
- **Finance π°**: Predict stock prices based on historical data to assist investors and traders in making informed decisions. | |
- **Energy β‘**: Forecast energy consumption patterns to optimize resource allocation, plan maintenance, and manage energy grids more efficiently. | |
- **Retail π¬**: Predict future demand for products to optimize inventory levels, reduce holding costs, and improve supply chain efficiency. | |
- **Transportation and Traffic flow :car:**: Forecasting traffic patterns to optimize route planning, reduce congestion, and improve overall transportation efficiency. | |
- **Healthcare** π¨ββοΈ: Predicting the number of patient admissions to hospitals, helping healthcare providers allocate resources effectively and manage staffing levels. | |
- **Weather π¦οΈ**: Predicting weather conditions over time, which is crucial for planning various activities, agricultural decisions, and disaster preparedness. | |
""") | |
st.markdown(" ") | |
###################################### USE CASE ####################################### | |
# LOAD DATASET | |
path_timeseries = r"data/household" | |
data_model = load_data_pickle(path_timeseries,"household_power_consumption_clean.pkl") | |
data_model.rename({"Date":"ds", "Global_active_power":"y"}, axis=1, inplace=True) | |
data_model.dropna(inplace=True) | |
data_model["ds"] = pd.to_datetime(data_model["ds"]) | |
# BEGINNING OF USE CASE | |
st.divider() | |
st.markdown("# Power Consumption Forecasting β‘") | |
#st.markdown(" ") | |
st.info("""In this use case, a time series forecasting model learns how to accuratly predict the **energy consumption** (or global active power in the dataset) of a household using historical data. | |
A forecasting model can be a valuable tool for energy consumption analysis as it can help **optimize resource planning** and **avoid overloads** during peak demand periods.""") | |
st.markdown(" ") | |
_, col, _ = st.columns([0.15,0.7,0.15]) | |
with col: | |
st.image("images/energy_consumption.jpg") | |
st.markdown(" ") | |
st.markdown(" ") | |
st.markdown("### About the data π") | |
st.markdown("""You were provided data from the **daily energy consumption** of a household between January 2007 and November 2010 (46 months). <br> | |
The goal is to forecast the **Global active power** being produced daily by the household. | |
Additional variables such as *Global Intensity* and three levels of *Sub-metering* are also available for the forecast. | |
""", unsafe_allow_html=True) | |
st.markdown(" ") | |
st.info("""The data has been split into "historical data" and "to be predicted". Since forecasting models are **supervised**, we will use the household's energy data from January 2007 to December 2009 as historical data to train the model. | |
We will then use the rest of the available data (starting January 2010) to test the performance of the model.""") | |
select_cutoff_date = date(2010, 1, 1) | |
select_cutoff_date = select_cutoff_date.strftime('%Y-%m-%d') | |
# SELECT TRAIN/TEST SET | |
train = data_model[data_model["ds"] <= select_cutoff_date] | |
test = data_model[data_model["ds"] > select_cutoff_date] | |
# PLOT TRAIN/TEST SET | |
train_plot = train.copy() | |
train_plot["split"] = ["historical data"]*len(train_plot) | |
test_plot = test.copy() | |
test_plot["split"] = ["to be predicted"]*len(test_plot) | |
data_clean_plot = pd.concat([train_plot, test_plot]) # plot dataset | |
st.markdown(" ") | |
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Global active power", "Sub metering 1", "Sub metering 2", "Sub metering 3", "Global Intensity"]) | |
with tab1: | |
ts_chart = alt.Chart(data_clean_plot).mark_line().encode( | |
x=alt.X('ds:T', axis=alt.Axis(format='%b %Y', tickCount=12), title="Date"), | |
y=alt.Y('y:Q', title="Global active power"), | |
color='split:N', | |
).interactive() | |
st.markdown("**View Global active power** (to be forecasted)") | |
st.altair_chart(ts_chart, use_container_width=True) | |
st.success("""**Global active power** refers to the total real power consumed by electrical devices in the house (in kilowatts).""") | |
with tab2: | |
ts_chart = alt.Chart(data_clean_plot.loc[data_clean_plot["split"]=="historical data"]).mark_line().encode( | |
x=alt.X('ds:T', axis=alt.Axis(format='%b %Y', tickCount=12), title="Date"), | |
y=alt.Y('Sub_metering_1:Q', title="Sub metering 1"), | |
color=alt.Color('split:N')) #, scale=custom_color_scale)) | |
st.markdown("**View Sub-metering 1** (additional)") | |
st.altair_chart(ts_chart.interactive(), use_container_width=True) | |
st.success("**Sub-metering 1** is the total active power consumed by the kitchen in the house (in kilowatts).") | |
with tab3: | |
ts_chart = alt.Chart(data_clean_plot.loc[data_clean_plot["split"]=="historical data"]).mark_line().encode( | |
x=alt.X('ds:T', axis=alt.Axis(format='%b %Y', tickCount=12), title="Date"), | |
y=alt.Y('Sub_metering_2:Q', title="Sub metering 2"), | |
color=alt.Color('split:N')) #, scale=custom_color_scale)) | |
st.markdown("**View Sub-metering 2** (additional)") | |
st.altair_chart(ts_chart.interactive(), use_container_width=True) | |
st.success("**Sub-metering 2** is the total active power consumed by the laundry room in the house (in kilowatts).") | |
with tab4: | |
ts_chart = alt.Chart(data_clean_plot.loc[data_clean_plot["split"]=="historical data"]).mark_line().encode( | |
x=alt.X('ds:T', axis=alt.Axis(format='%b %Y', tickCount=12), title="Date"), | |
y=alt.Y('Sub_metering_3:Q', title="Sub metering 3"), | |
color=alt.Color('split:N')) #scale=custom_color_scale)) | |
st.markdown("**View Sub-metering 3** (additional)") | |
st.altair_chart(ts_chart.interactive(), use_container_width=True) | |
st.success("**Sub-metering 3** is the active power consumed by the electric water heater and air conditioner in the household (in kilowatts).") | |
with tab5: | |
custom_color_scale = alt.Scale(range=['red', 'lightcoral']) | |
ts_chart = alt.Chart(data_clean_plot.loc[data_clean_plot["split"]=="historical data"]).mark_line().encode( | |
x=alt.X('ds:T', axis=alt.Axis(format='%b %Y', tickCount=12), title="Date"), | |
y=alt.Y('Global_intensity:Q', title="Global active power"), | |
color=alt.Color('split:N')) # scale=custom_color_scale)) | |
st.markdown("**View Global intensity** (additional)") | |
st.altair_chart(ts_chart.interactive(), use_container_width=True) | |
st.success("**Global intensity** is the average current intensity delivered to the household (amps).") | |
st.markdown(" ") | |
st.markdown(" ") | |
st.markdown("### Forecast model π") | |
st.markdown("""The forecasting model used in this use case allows **additional data** to be used for training. | |
Try adding more data to the model as it can help improve its performance and accuracy.""") | |
# ADD VARIABLES TO ANALYSIS | |
add_var = ["Sub_metering_1", "Sub_metering_2", "Sub_metering_3","Global_intensity"] | |
st.markdown("") | |
select_add_var = st.multiselect("**Add variables to the model**", add_var) | |
if 'model_train' not in st.session_state: | |
st.session_state['model_train'] = False | |
# if st.session_state.model_train: | |
# text = "The model has alerady been trained." | |
# else: | |
# st.write("The model hasn't been trained yet") | |
st.markdown("") | |
run_model = st.button("**Run the model**") | |
st.markdown(" ") | |
st.markdown(" ") | |
################################## SEE RESULTS ############################### | |
if "saved_model" not in st.session_state: | |
st.session_state["saved_model"] = False | |
if run_model: | |
with st.spinner('Wait for it...'): | |
fbmodel, forecast = forecast_prophet(train, test, col=select_add_var) | |
st.session_state.model_train = True | |
st.session_state.saved_model = fbmodel | |
####################### SEE RESULTS ######################## | |
st.markdown("#### See the results βοΈ") | |
st.info("The model is able to forecast energy consumption as well as learn the predicted data's **trend**, **weekly** and **yearly seasonality**.") | |
tab1_result, tab2_result, tab3_result, tab4_result = st.tabs(["Performance", "Trend", "Weekly seasonality", "Yearly seasonality"]) | |
with tab1_result: | |
# Compute model root mean squared error | |
y_true = test_plot["y"] | |
y_pred = forecast["yhat"] | |
error = str(np.round(root_mean_squared_error(y_true, y_pred, ),3)) | |
col1, col2 = st.columns([0.1,0.9]) | |
with col1: | |
st.markdown("") | |
st.metric(label="**Average error**", value=error) | |
with col2: | |
# Create df for true vs predicted plot | |
df_results = pd.concat([test_plot.reset_index(drop=True), forecast.drop(columns=["ds"]).reset_index(drop=True)], axis=1)[["ds","y","yhat"]] | |
df_results = df_results.melt(id_vars="ds") | |
df_results["variable"] = df_results["variable"].map({"y":"true values", "yhat":"predicted values"}) | |
df_results.columns = ["Date", "Variable", "Global Active Power"] | |
fig = px.line(df_results, x="Date", y="Global Active Power", color="Variable", | |
color_discrete_sequence=["lightblue", "black"], line_dash = 'Variable') | |
fig.update_layout( | |
title=f'True vs predicted power consumption', | |
width=1200, | |
height=600 | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
with tab2_result: | |
ymin = forecast["trend"].min() | |
ymax = forecast["trend"].max() | |
fig = px.area(forecast, x="ds", y="trend", color_discrete_sequence=["red"]) #range_y=[ymin, ymax]) | |
fig.update_layout(title="Trend", xaxis_title="Date", yaxis_title="Trend") | |
st.plotly_chart(fig, use_container_width=True) | |
st.markdown("""**Interpretation** <br> | |
No trend in the household's energy consumption has been detected by the model.""", unsafe_allow_html=True) | |
with tab3_result: | |
#st.success("**Weekly seasonality** refers to a repeating pattern or variation that occurs on a weekly basis on the energy consumption data.") | |
days_week = dict(zip(np.arange(1,8),["Monday", "Tuedsay", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"])) | |
forecast_weekly = forecast.copy() | |
forecast_weekly["dayweek"] = forecast_weekly["ds"].apply(lambda x: x.isoweekday()).map(days_week) | |
fig = px.area(forecast_weekly, x="dayweek", y="weekly", color_discrete_sequence=["purple"]) | |
fig.update_layout(title="Weekly seasonality", xaxis_title="Date", yaxis_title="Weekly") | |
st.plotly_chart(fig, use_container_width=True) | |
st.markdown("""**Interpretation** <br> | |
The household consumes more electrical power during the week-end (Saturday and Sunday) then during the week. | |
""", unsafe_allow_html=True) | |
with tab4_result: | |
forecast_year = forecast[["ds","yearly"]].copy() | |
forecast_year["ds_year"] = forecast_year["ds"].apply(lambda x: x.strftime("%B %d")) | |
forecast_year["ds"] = forecast_year["ds"].apply(lambda x: x.strftime("%m-%d")) | |
forecast_year.sort_values(by=["ds"], inplace=True) | |
forecast_year = forecast_year.groupby(["ds","ds_year"]).mean().reset_index() | |
st.markdown("") | |
ts_chart = alt.Chart(forecast_year, title="Yearly seasonality").mark_area(opacity=0.5,line = {'color':'darkblue'}).encode( | |
x=alt.X('ds_year:T', axis=alt.Axis(format='%b', tickCount=12), title="Date"), | |
y=alt.Y('yearly:Q', title="Yearly seasonality"), | |
).interactive() | |
st.altair_chart(ts_chart, use_container_width=True) | |
st.markdown("""**Interpretation** <br> | |
The household consumes more energy during the winter (November to February) and less during the warmer months. | |
""", unsafe_allow_html=True) | |
################################## MAKE FUTURE PREDICTIONS ############################### | |
# st.markdown("#### Forecast new values ") | |
# st.info("**The model needs to be trained before it can predict new values.**") | |
# st. | |
# make_predictions = st.button("**Forecast new values**") | |
# if make_predictions is True: | |
# if st.session_state.saved_model is True: | |