Spaces:
Running
Running
import os | |
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from st_pages import Page, show_pages, Section, add_indentation | |
from PIL import Image | |
#from utils import authenticate_drive | |
################################################################################## | |
# PAGE CONFIGURATION # | |
################################################################################## | |
st.set_page_config(layout="wide") | |
#add_indentation() | |
################################################################################## | |
# GOOGLE DRIVE CONNEXION # | |
################################################################################## | |
# if ["drive_oauth"] not in st.session_state: | |
# st.session_state["drive_oauth"] = authenticate_drive() | |
# drive_oauth = st.session_state["drive_oauth"] | |
################################################################################## | |
# TITLE # | |
################################################################################## | |
st.image("images/AI.jpg") | |
st.markdown(" ") | |
col1, col2 = st.columns([0.65,0.35], gap="medium") | |
with col1: | |
st.title("AI and Data Science Examples") | |
st.subheader("HEC Paris, 2023-2024") | |
st.markdown("""**Course provided by Shirish C. SRIVASTAVA** <br> | |
**Hi! PARIS Engineering team**: Laurène DAVID, Salma HOUIDI and Maeva N'GUESSAN""", unsafe_allow_html=True) | |
#st.markdown("in collaboration with Hi! PARIS engineers: Laurène DAVID, Salma HOUIDI and Maeva N'GUESSAN") | |
with col2: | |
#Hi! PARIS collaboration mention | |
st.markdown(" ") | |
st.markdown(" ") | |
st.markdown(" ") | |
image_hiparis = Image.open('images/hi-paris.png') | |
st.image(image_hiparis, width=150) | |
url = "https://www.hi-paris.fr/" | |
#st.markdown("This app was funded by the Hi! PARIS Center") | |
st.markdown("""###### **Made in collaboration with [Hi! PARIS](%s)** """ % url, unsafe_allow_html=True) | |
st.markdown(" ") | |
st.divider() | |
# #Hi! PARIS collaboration mention | |
# st.markdown(" ") | |
# image_hiparis = Image.open('images/hi-paris.png') | |
# st.image(image_hiparis, width=150) | |
# url = "https://www.hi-paris.fr/" | |
# st.markdown("**The app was made in collaboration with [Hi! PARIS](%s)**" % url) | |
################################################################################## | |
# DASHBOARD/SIDEBAR # | |
################################################################################## | |
# AI use case pages | |
show_pages( | |
[ | |
Page("main_page.py", "Home Page", "🏠"), | |
Section(name=" ", icon=""), | |
Section(name=" ", icon=""), | |
Section(name="Machine Learning", icon="1️⃣"), | |
Page("pages/supervised_unsupervised_page.py", "1| Supervised vs Unsupervised 🔍", ""), | |
Page("pages/timeseries_analysis.py", "2| Time Series Forecasting 📈", ""), | |
Page("pages/recommendation_system.py", "3| Recommendation systems 🛒", ""), | |
Section(name="Natural Language Processing", icon="2️⃣"), | |
Page("pages/topic_modeling.py", "1| Topic Modeling 📚", ""), | |
Page("pages/sentiment_analysis.py", "2| Sentiment Analysis 👍", ""), | |
Section(name="Computer Vision", icon="3️⃣"), | |
Page("pages/image_classification.py", "1| Image Classification 🖼️", ""), | |
Page("pages/object_detection.py", "2| Object Detection 📹", ""), | |
Page("pages/go_further.py", "🚀 Go further") | |
] | |
) | |
################################################################################## | |
# PAGE CONTENT # | |
################################################################################## | |
st.header("About the app") | |
st.info("""The **AI and Data Science Examples** app was created as a tool to introduce students to the field of Data Science by showcasing real-life applications of AI. | |
It includes use cases using traditional Machine Learning algorithms on structured data, as well as models that analyze unstructured data (text, images,...).""") | |
st.markdown(" ") | |
st.markdown("""The app is structured into three sections: | |
- 1️⃣ **Machine Learning**: This first section covers use cases where structured data (data in a tabular format) is fed to an AI model. | |
You will find pages on *Supervised/Unsupervised Learning*, *Time Series Forecasting* and AI powered *Recommendation Systems*. | |
- 2️⃣ **Natural Language Processing** (NLP): This second section showcases AI applications where large amounts of text data is analyzed using Deep Learning models. | |
Pages on *Topic Modeling* and *Sentiment Analysis*, which are types of NLP models, can be found in this section. | |
- 3️⃣ **Computer Vision**: This final section covers a sub-field of AI called Computer Vision which deals with image/video data. | |
The field of Computer Vision includes *Image classification* and *Object Detection*, which are both featured in this section. | |
""") | |
st.image("images/ML_domains.png", | |
caption="""This figure showcases a selection of sub-fields in Artificial Intelligence, such as traditional | |
Machine Learning, NLP, Computer Vision and Robotics.""") | |
# st.markdown(" ") | |
# st.markdown(" ") | |
# st.markdown("## Want to learn more about AI ?") | |
# st.markdown("""**Hi! PARIS**, a multidisciplinary center on Data Analysis and AI founded by Institut Polytechnique de Paris and HEC Paris, | |
# hosts every year a **Data Science Bootcamp** for students of all levels.""") |