Spaces:
Running
Running
import os | |
import io | |
import pickle | |
import base64 | |
import streamlit as st | |
import pandas as pd | |
#from google.oauth2 import service_account | |
#from googleapiclient.discovery import build | |
from htbuilder import HtmlElement, div, hr, a, p, img, styles | |
from pathlib import Path | |
######################## LOAD DATA FROM REPO ########################## | |
def load_data_pickle(path, file): | |
"""Load data from pickle file""" | |
df = pd.read_pickle(os.path.join(path,file)) | |
return df | |
def load_data_csv(path, file): | |
"Load data from csv file" | |
df = pd.read_csv(os.path.join(path,file)) | |
return df | |
def load_model_pickle(path, file): | |
"""Load model from pickle file""" | |
path_file = os.path.join(path, file) | |
model = pickle.load(open(path_file, 'rb')) | |
return model | |
#################### LOAD DATA FROM GOOGLE DRIVE ################### | |
# @st.cache_data(ttl=3600, show_spinner=False) | |
# def load_data(file, sheet_name, **kwargs): | |
# df = pd.read_excel(file, sheet_name=sheet_name, **kwargs) | |
# return df | |
# @st.cache_data(ttl=3600, show_spinner=False) | |
# def load_model(file): | |
# """Load model from pickle file""" | |
# model = pickle.load(file) | |
# return model | |
# @st.cache_data(show_spinner=False) #3600 seconds | |
# def authenticate_drive(): | |
# creds = service_account.Credentials.from_service_account_info( | |
# st.secrets["connections_gcs"], | |
# scopes=["https://www.googleapis.com/auth/drive.readonly"] | |
# ) | |
# drive_service = build('drive', 'v3', credentials=creds) | |
# return drive_service | |
# @st.cache_data(ttl=3600, show_spinner=False) | |
# def load_content_drive(file_id, _drive_service): | |
# """ Load content from google drive | |
# """ | |
# request = _drive_service.files().get_media(fileId=file_id) | |
# file_content = io.BytesIO(request.execute()) | |
# return file_content | |
# @st.cache_data(ttl=3600, show_spinner=False) | |
# def load_data_drive(file_content, sheet_name=None, **kwargs): | |
# """ Load data using file_content | |
# """ | |
# if sheet_name is None: | |
# df = pd.read_excel(file_content, **kwargs) | |
# else: | |
# df = pd.read_excel(file_content, sheet_name=sheet_name, **kwargs) | |
# return df | |
# @st.cache_data(ttl=3600, show_spinner=False) | |
# def load_model_drive(file_content): | |
# """ Load model using file_content | |
# """ | |
# model = pickle.load(file_content) | |
# return model | |
# def files_in_drive(folder_id, drive_service): | |
# results = drive_service.files().list(q=f"'{folder_id}' in parents").execute() | |
# files_dict= results.get('files', []) | |
# return files_dict | |
#################### PASSEWORD ##################### | |
def check_password(): | |
"""Returns `True` if the user had the correct password.""" | |
def password_entered(): | |
"""Checks whether a password entered by the user is correct.""" | |
if "password" in st.session_state and st.session_state["password"] == st.secrets["password"]: | |
st.session_state["password_correct"] = True | |
del st.session_state["password"] # don't store password | |
else: | |
st.session_state["password_correct"] = False | |
if "password_correct" not in st.session_state: | |
# First run, show input for password. | |
st.text_input( | |
"Password", type="password", on_change=password_entered, key="password" | |
) | |
return False | |
elif not st.session_state["password_correct"]: | |
# Password not correct, show input + error. | |
st.text_input( | |
"Password", type="password", on_change=password_entered, key="password" | |
) | |
st.error("😕 Password incorrect") | |
return False | |
else: | |
# Password correct. | |
return True | |
###################### OTHER ###################### | |
def img_to_bytes(img_path): | |
img_bytes = Path(img_path).read_bytes() | |
encoded = base64.b64encode(img_bytes).decode() | |
return encoded | |
def link(link, text, **style): | |
return a(_href=link, _target="_blank", style=styles(**style))(text) | |
def convert_df(df): | |
# IMPORTANT: Cache the conversion to prevent computation on every rerun | |
return df.to_csv().encode('utf-8') |