|
|
|
""" |
|
Check a model's accuracy on a test or val split of a dataset |
|
|
|
Usage: |
|
$ yolo mode=val model=yolov8n.pt data=coco128.yaml imgsz=640 |
|
|
|
Usage - formats: |
|
$ yolo mode=val model=yolov8n.pt # PyTorch |
|
yolov8n.torchscript # TorchScript |
|
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True |
|
yolov8n_openvino_model # OpenVINO |
|
yolov8n.engine # TensorRT |
|
yolov8n.mlmodel # CoreML (macOS-only) |
|
yolov8n_saved_model # TensorFlow SavedModel |
|
yolov8n.pb # TensorFlow GraphDef |
|
yolov8n.tflite # TensorFlow Lite |
|
yolov8n_edgetpu.tflite # TensorFlow Edge TPU |
|
yolov8n_paddle_model # PaddlePaddle |
|
""" |
|
import json |
|
import time |
|
from pathlib import Path |
|
|
|
import torch |
|
from tqdm import tqdm |
|
|
|
from ultralytics.nn.autobackend import AutoBackend |
|
from ultralytics.yolo.cfg import get_cfg |
|
from ultralytics.yolo.data.utils import check_cls_dataset, check_det_dataset |
|
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, RANK, SETTINGS, TQDM_BAR_FORMAT, callbacks, colorstr, emojis |
|
from ultralytics.yolo.utils.checks import check_imgsz |
|
from ultralytics.yolo.utils.files import increment_path |
|
from ultralytics.yolo.utils.ops import Profile |
|
from ultralytics.yolo.utils.torch_utils import de_parallel, select_device, smart_inference_mode |
|
|
|
|
|
class BaseValidator: |
|
""" |
|
BaseValidator |
|
|
|
A base class for creating validators. |
|
|
|
Attributes: |
|
dataloader (DataLoader): Dataloader to use for validation. |
|
pbar (tqdm): Progress bar to update during validation. |
|
args (SimpleNamespace): Configuration for the validator. |
|
model (nn.Module): Model to validate. |
|
data (dict): Data dictionary. |
|
device (torch.device): Device to use for validation. |
|
batch_i (int): Current batch index. |
|
training (bool): Whether the model is in training mode. |
|
speed (float): Batch processing speed in seconds. |
|
jdict (dict): Dictionary to store validation results. |
|
save_dir (Path): Directory to save results. |
|
""" |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): |
|
""" |
|
Initializes a BaseValidator instance. |
|
|
|
Args: |
|
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation. |
|
save_dir (Path): Directory to save results. |
|
pbar (tqdm.tqdm): Progress bar for displaying progress. |
|
args (SimpleNamespace): Configuration for the validator. |
|
""" |
|
self.dataloader = dataloader |
|
self.pbar = pbar |
|
self.args = args or get_cfg(DEFAULT_CFG) |
|
self.model = None |
|
self.data = None |
|
self.device = None |
|
self.batch_i = None |
|
self.training = True |
|
self.speed = {'preprocess': 0.0, 'inference': 0.0, 'loss': 0.0, 'postprocess': 0.0} |
|
self.jdict = None |
|
|
|
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task |
|
name = self.args.name or f'{self.args.mode}' |
|
self.save_dir = save_dir or increment_path(Path(project) / name, |
|
exist_ok=self.args.exist_ok if RANK in (-1, 0) else True) |
|
(self.save_dir / 'labels' if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
if self.args.conf is None: |
|
self.args.conf = 0.001 |
|
|
|
self.plots = {} |
|
self.callbacks = _callbacks or callbacks.get_default_callbacks() |
|
|
|
@smart_inference_mode() |
|
def __call__(self, trainer=None, model=None): |
|
""" |
|
Supports validation of a pre-trained model if passed or a model being trained |
|
if trainer is passed (trainer gets priority). |
|
""" |
|
self.training = trainer is not None |
|
if self.training: |
|
self.device = trainer.device |
|
self.data = trainer.data |
|
model = trainer.ema.ema or trainer.model |
|
self.args.half = self.device.type != 'cpu' |
|
model = model.half() if self.args.half else model.float() |
|
self.model = model |
|
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device) |
|
self.args.plots = trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1) |
|
model.eval() |
|
else: |
|
callbacks.add_integration_callbacks(self) |
|
self.run_callbacks('on_val_start') |
|
assert model is not None, 'Either trainer or model is needed for validation' |
|
self.device = select_device(self.args.device, self.args.batch) |
|
self.args.half &= self.device.type != 'cpu' |
|
model = AutoBackend(model, device=self.device, dnn=self.args.dnn, data=self.args.data, fp16=self.args.half) |
|
self.model = model |
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine |
|
imgsz = check_imgsz(self.args.imgsz, stride=stride) |
|
if engine: |
|
self.args.batch = model.batch_size |
|
else: |
|
self.device = model.device |
|
if not pt and not jit: |
|
self.args.batch = 1 |
|
LOGGER.info(f'Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models') |
|
|
|
if isinstance(self.args.data, str) and self.args.data.endswith('.yaml'): |
|
self.data = check_det_dataset(self.args.data) |
|
elif self.args.task == 'classify': |
|
self.data = check_cls_dataset(self.args.data, split=self.args.split) |
|
else: |
|
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found ❌")) |
|
|
|
if self.device.type == 'cpu': |
|
self.args.workers = 0 |
|
if not pt: |
|
self.args.rect = False |
|
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch) |
|
|
|
model.eval() |
|
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) |
|
|
|
dt = Profile(), Profile(), Profile(), Profile() |
|
n_batches = len(self.dataloader) |
|
desc = self.get_desc() |
|
|
|
|
|
|
|
bar = tqdm(self.dataloader, desc, n_batches, bar_format=TQDM_BAR_FORMAT) |
|
self.init_metrics(de_parallel(model)) |
|
self.jdict = [] |
|
for batch_i, batch in enumerate(bar): |
|
self.run_callbacks('on_val_batch_start') |
|
self.batch_i = batch_i |
|
|
|
with dt[0]: |
|
batch = self.preprocess(batch) |
|
|
|
|
|
with dt[1]: |
|
preds = model(batch['img'], augment=self.args.augment) |
|
|
|
|
|
with dt[2]: |
|
if self.training: |
|
self.loss += model.loss(batch, preds)[1] |
|
|
|
|
|
with dt[3]: |
|
preds = self.postprocess(preds) |
|
|
|
self.update_metrics(preds, batch) |
|
if self.args.plots and batch_i < 3: |
|
self.plot_val_samples(batch, batch_i) |
|
self.plot_predictions(batch, preds, batch_i) |
|
|
|
self.run_callbacks('on_val_batch_end') |
|
stats = self.get_stats() |
|
self.check_stats(stats) |
|
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1E3 for x in dt))) |
|
self.finalize_metrics() |
|
self.print_results() |
|
self.run_callbacks('on_val_end') |
|
if self.training: |
|
model.float() |
|
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix='val')} |
|
return {k: round(float(v), 5) for k, v in results.items()} |
|
else: |
|
LOGGER.info('Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image' % |
|
tuple(self.speed.values())) |
|
if self.args.save_json and self.jdict: |
|
with open(str(self.save_dir / 'predictions.json'), 'w') as f: |
|
LOGGER.info(f'Saving {f.name}...') |
|
json.dump(self.jdict, f) |
|
stats = self.eval_json(stats) |
|
if self.args.plots or self.args.save_json: |
|
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}") |
|
return stats |
|
|
|
def add_callback(self, event: str, callback): |
|
"""Appends the given callback.""" |
|
self.callbacks[event].append(callback) |
|
|
|
def run_callbacks(self, event: str): |
|
"""Runs all callbacks associated with a specified event.""" |
|
for callback in self.callbacks.get(event, []): |
|
callback(self) |
|
|
|
def get_dataloader(self, dataset_path, batch_size): |
|
"""Get data loader from dataset path and batch size.""" |
|
raise NotImplementedError('get_dataloader function not implemented for this validator') |
|
|
|
def build_dataset(self, img_path): |
|
"""Build dataset""" |
|
raise NotImplementedError('build_dataset function not implemented in validator') |
|
|
|
def preprocess(self, batch): |
|
"""Preprocesses an input batch.""" |
|
return batch |
|
|
|
def postprocess(self, preds): |
|
"""Describes and summarizes the purpose of 'postprocess()' but no details mentioned.""" |
|
return preds |
|
|
|
def init_metrics(self, model): |
|
"""Initialize performance metrics for the YOLO model.""" |
|
pass |
|
|
|
def update_metrics(self, preds, batch): |
|
"""Updates metrics based on predictions and batch.""" |
|
pass |
|
|
|
def finalize_metrics(self, *args, **kwargs): |
|
"""Finalizes and returns all metrics.""" |
|
pass |
|
|
|
def get_stats(self): |
|
"""Returns statistics about the model's performance.""" |
|
return {} |
|
|
|
def check_stats(self, stats): |
|
"""Checks statistics.""" |
|
pass |
|
|
|
def print_results(self): |
|
"""Prints the results of the model's predictions.""" |
|
pass |
|
|
|
def get_desc(self): |
|
"""Get description of the YOLO model.""" |
|
pass |
|
|
|
@property |
|
def metric_keys(self): |
|
"""Returns the metric keys used in YOLO training/validation.""" |
|
return [] |
|
|
|
def on_plot(self, name, data=None): |
|
"""Registers plots (e.g. to be consumed in callbacks)""" |
|
self.plots[name] = {'data': data, 'timestamp': time.time()} |
|
|
|
|
|
def plot_val_samples(self, batch, ni): |
|
"""Plots validation samples during training.""" |
|
pass |
|
|
|
def plot_predictions(self, batch, preds, ni): |
|
"""Plots YOLO model predictions on batch images.""" |
|
pass |
|
|
|
def pred_to_json(self, preds, batch): |
|
"""Convert predictions to JSON format.""" |
|
pass |
|
|
|
def eval_json(self, stats): |
|
"""Evaluate and return JSON format of prediction statistics.""" |
|
pass |
|
|