Spaces:
Sleeping
Sleeping
from transformers import SamModel, SamProcessor, pipeline | |
import cv2 | |
import random | |
import numpy as np | |
import torch | |
from torch.nn.functional import cosine_similarity | |
import gradio as gr | |
class RoiMatching(): | |
def __init__(self,img1,img2,device='cpu', v_min=200, v_max= 7000, mode = 'embedding'): | |
""" | |
Initialize | |
:param img1: PIL image | |
:param img2: | |
""" | |
self.img1 = img1 | |
self.img2 = img2 | |
self.device = device | |
self.v_min = v_min | |
self.v_max = v_max | |
self.mode = mode | |
def _sam_everything(self,imgs): | |
generator = pipeline("mask-generation", model="facebook/sam-vit-huge", device=self.device) | |
outputs = generator(imgs, points_per_batch=64,pred_iou_thresh=0.90,stability_score_thresh=0.9,) | |
return outputs | |
def _mask_criteria(self, masks, v_min=200, v_max= 7000): | |
remove_list = set() | |
for _i, mask in enumerate(masks): | |
if mask.sum() < v_min or mask.sum() > v_max: | |
remove_list.add(_i) | |
masks = [mask for idx, mask in enumerate(masks) if idx not in remove_list] | |
n = len(masks) | |
remove_list = set() | |
for i in range(n): | |
for j in range(i + 1, n): | |
mask1, mask2 = masks[i], masks[j] | |
intersection = (mask1 & mask2).sum() | |
smaller_mask_area = min(masks[i].sum(), masks[j].sum()) | |
if smaller_mask_area > 0 and (intersection / smaller_mask_area) >= 0.9: | |
if mask1.sum() < mask2.sum(): | |
remove_list.add(i) | |
else: | |
remove_list.add(j) | |
return [mask for idx, mask in enumerate(masks) if idx not in remove_list] | |
def _roi_proto(self, image, masks): | |
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(self.device) | |
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge") | |
inputs = processor(image, return_tensors="pt").to(self.device) | |
image_embeddings = model.get_image_embeddings(inputs["pixel_values"]) | |
embs = [] | |
for _m in masks: | |
# Convert mask to uint8, resize, and then back to boolean | |
tmp_m = _m.astype(np.uint8) | |
tmp_m = cv2.resize(tmp_m, (64, 64), interpolation=cv2.INTER_NEAREST) | |
tmp_m = torch.tensor(tmp_m.astype(bool), device=self.device, | |
dtype=torch.float32) # Convert to tensor and send to CUDA | |
tmp_m = tmp_m.unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions to match emb1 | |
# Element-wise multiplication with emb1 | |
tmp_emb = image_embeddings * tmp_m | |
# (1,256,64,64) | |
tmp_emb[tmp_emb == 0] = torch.nan | |
emb = torch.nanmean(tmp_emb, dim=(2, 3)) | |
emb[torch.isnan(emb)] = 0 | |
embs.append(emb) | |
return embs | |
def _cosine_similarity(self, vec1, vec2): | |
# Ensure vec1 and vec2 are 2D tensors [1, N] | |
vec1 = vec1.view(1, -1) | |
vec2 = vec2.view(1, -1) | |
return cosine_similarity(vec1, vec2).item() | |
def _similarity_matrix(self, protos1, protos2): | |
# Initialize similarity_matrix as a torch tensor | |
similarity_matrix = torch.zeros(len(protos1), len(protos2), device=self.device) | |
for i, vec_a in enumerate(protos1): | |
for j, vec_b in enumerate(protos2): | |
similarity_matrix[i, j] = self._cosine_similarity(vec_a, vec_b) | |
# Normalize the similarity matrix | |
sim_matrix = (similarity_matrix - similarity_matrix.min()) / (similarity_matrix.max() - similarity_matrix.min()) | |
return similarity_matrix | |
def _roi_match(self, matrix, masks1, masks2, sim_criteria=0.8): | |
index_pairs = [] | |
while torch.any(matrix > sim_criteria): | |
max_idx = torch.argmax(matrix) | |
max_sim_idx = (max_idx // matrix.shape[1], max_idx % matrix.shape[1]) | |
if matrix[max_sim_idx[0], max_sim_idx[1]] > sim_criteria: | |
index_pairs.append(max_sim_idx) | |
matrix[max_sim_idx[0], :] = -1 | |
matrix[:, max_sim_idx[1]] = -1 | |
masks1_new = [] | |
masks2_new = [] | |
for i, j in index_pairs: | |
masks1_new.append(masks1[i]) | |
masks2_new.append(masks2[j]) | |
return masks1_new, masks2_new | |
def _overlap_pair(self, masks1,masks2): | |
self.masks1_cor = [] | |
self.masks2_cor = [] | |
k = 0 | |
for mask in masks1[:-1]: | |
k += 1 | |
print('mask1 {} is finding corresponding region mask...'.format(k)) | |
m1 = mask | |
a1 = mask.sum() | |
v1 = np.mean(np.expand_dims(m1, axis=-1) * self.im1) | |
overlap = m1 * masks2[-1].astype(np.int64) | |
# print(np.unique(overlap)) | |
if (overlap > 0).sum() / a1 > 0.3: | |
counts = np.bincount(overlap.flatten()) | |
# print(counts) | |
sorted_indices = np.argsort(counts)[::-1] | |
top_two = sorted_indices[1:3] | |
# print(top_two) | |
if top_two[-1] == 0: | |
cor_ind = 0 | |
elif abs(counts[top_two[-1]] - counts[top_two[0]]) / max(counts[top_two[-1]], counts[top_two[0]]) < 0.2: | |
cor_ind = 0 | |
else: | |
# cor_ind = 0 | |
m21 = masks2[top_two[0]-1] | |
m22 = masks2[top_two[1]-1] | |
a21 = masks2[top_two[0]-1].sum() | |
a22 = masks2[top_two[1]-1].sum() | |
v21 = np.mean(np.expand_dims(m21, axis=-1)*self.im2) | |
v22 = np.mean(np.expand_dims(m22, axis=-1)*self.im2) | |
if np.abs(a21-a1) > np.abs(a22-a1): | |
cor_ind = 0 | |
else: | |
cor_ind = 1 | |
print('area judge to cor_ind {}'.format(cor_ind)) | |
if np.abs(v21-v1) < np.abs(v22-v1): | |
cor_ind = 0 | |
else: | |
cor_ind = 1 | |
# print('value judge to cor_ind {}'.format(cor_ind)) | |
# print('mask1 {} has found the corresponding region mask: mask2 {}'.format(k, top_two[cor_ind])) | |
self.masks2_cor.append(masks2[top_two[cor_ind] - 1]) | |
self.masks1_cor.append(mask) | |
# return masks1_new, masks2_new | |
def get_paired_roi(self): | |
self.masks1 = self._sam_everything(self.img1) # len(RM.masks1) 2; RM.masks1[0] dict; RM.masks1[0]['masks'] list | |
self.masks2 = self._sam_everything(self.img2) | |
self.masks1 = self._mask_criteria(self.masks1['masks'], v_min=self.v_min, v_max=self.v_max) | |
self.masks2 = self._mask_criteria(self.masks2['masks'], v_min=self.v_min, v_max=self.v_max) | |
match self.mode: | |
case 'embedding': | |
if len(self.masks1) > 0 and len(self.masks2) > 0: | |
self.embs1 = self._roi_proto(self.img1,self.masks1) #device:cuda1 | |
self.embs2 = self._roi_proto(self.img2,self.masks2) | |
self.sim_matrix = self._similarity_matrix(self.embs1, self.embs2) | |
self.masks1, self.masks2 = self._roi_match(self.sim_matrix,self.masks1,self.masks2) | |
case 'overlaping': | |
self._overlap_pair(self.masks1,self.masks2) | |
def visualize_masks(image1, masks1, image2, masks2): | |
# Convert PIL images to numpy arrays | |
background1 = np.array(image1) | |
background2 = np.array(image2) | |
# Convert RGB to BGR (OpenCV uses BGR color format) | |
background1 = cv2.cvtColor(background1, cv2.COLOR_RGB2BGR) | |
background2 = cv2.cvtColor(background2, cv2.COLOR_RGB2BGR) | |
# Create a blank mask for each image | |
mask1 = np.zeros_like(background1) | |
mask2 = np.zeros_like(background2) | |
distinct_colors = [ | |
(255, 0, 0), # Red | |
(0, 255, 0), # Green | |
(0, 0, 255), # Blue | |
(255, 255, 0), # Cyan | |
(255, 0, 255), # Magenta | |
(0, 255, 255), # Yellow | |
(128, 0, 0), # Maroon | |
(0, 128, 0), # Olive | |
(0, 0, 128), # Navy | |
(128, 128, 0), # Teal | |
(128, 0, 128), # Purple | |
(0, 128, 128), # Gray | |
(192, 192, 192) # Silver | |
] | |
def random_color(): | |
"""Generate a random color with high saturation and value in HSV color space.""" | |
hue = random.randint(0, 179) # Random hue value between 0 and 179 (HSV uses 0-179 range) | |
saturation = random.randint(200, 255) # High saturation value between 200 and 255 | |
value = random.randint(200, 255) # High value (brightness) between 200 and 255 | |
color = np.array([[[hue, saturation, value]]], dtype=np.uint8) | |
return cv2.cvtColor(color, cv2.COLOR_HSV2BGR)[0][0] | |
# Iterate through mask lists and overlay on the blank masks with different colors | |
for idx, (mask1_item, mask2_item) in enumerate(zip(masks1, masks2)): | |
# color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) | |
# color = distinct_colors[idx % len(distinct_colors)] | |
color = random_color() | |
# Convert binary masks to uint8 | |
mask1_item = np.uint8(mask1_item) | |
mask2_item = np.uint8(mask2_item) | |
# Create a mask where binary mask is True | |
fg_mask1 = np.where(mask1_item, 255, 0).astype(np.uint8) | |
fg_mask2 = np.where(mask2_item, 255, 0).astype(np.uint8) | |
# Apply the foreground masks on the corresponding masks with the same color | |
mask1[fg_mask1 > 0] = color | |
mask2[fg_mask2 > 0] = color | |
# Add the masks on top of the background images | |
result1 = cv2.addWeighted(background1, 1, mask1, 0.5, 0) | |
result2 = cv2.addWeighted(background2, 1, mask2, 0.5, 0) | |
return result1, result2 | |
def predict(im1,im2): | |
RM = RoiMatching(im1,im2,device='cpu') | |
RM.get_paired_roi() | |
visualized_image1, visualized_image2 = visualize_masks(im1, RM.masks1, im2, RM.masks2) | |
return visualized_image1, visualized_image2 | |
examples = [ | |
['./example/prostate_2d/image1.png', './example/prostate_2d/image2.png'], | |
['./example/cardiac_2d/image1.png', './example/cardiac_2d/image2.png'], | |
# ['./example/pathology/1B_B7_R.png', './example/pathology/1B_B7_T.png'], | |
] | |
gradio_app = gr.Interface( | |
predict, | |
inputs=[gr.Image(label="img1", type="pil"), gr.Image(label="img2", type="pil")], | |
outputs=[gr.Image(label="ROIs in img1"), gr.Image(label="ROIs in img2")], | |
title="SAMReg: One Registration is Worth Two Segmentations", | |
examples=examples, | |
description="<p> \ | |
<strong>Register anything with ROI-based registration representation.</strong> <br>\ | |
Choose an example below 🔥 🔥 🔥 <br>\ | |
Or, upload by yourself: <br>\ | |
1. Upload images to be valided to 'img1' and 'img2'. <br>2. Upload images to 'im1' and 'im2'. <br>\ | |
<br> \ | |
π The correspondence representation is presented by multiple paired-ROIs in the same color. <br>\ | |
π Examples below are all medical images for the algorithm proposed for medical registration initially. <br>\ | |
π Current UI interface only unleashes a small part of the capabilities of SAMReg, i.e., 2D registration w 'embedding' mode. \ | |
</p>", | |
cache_examples=False, | |
# allow_flagging="never", | |
) | |