SAMReg / app.py
hhhhhh0103's picture
Update app.py
1bcbd7b verified
raw
history blame
11.5 kB
from transformers import SamModel, SamProcessor, pipeline
from PIL import Image
import cv2
import random
import numpy as np
import torch
from torch.nn.functional import cosine_similarity
import gradio as gr
class RoiMatching():
def __init__(self,img1,img2,device='cuda:1', v_min=200, v_max= 7000, mode = 'embedding'):
"""
Initialize
:param img1: PIL image
:param img2:
"""
self.img1 = img1
self.img2 = img2
self.device = device
self.v_min = v_min
self.v_max = v_max
self.mode = mode
def _sam_everything(self,imgs):
generator = pipeline("mask-generation", model="facebook/sam-vit-huge", device=self.device)
outputs = generator(imgs, points_per_batch=64,pred_iou_thresh=0.90,stability_score_thresh=0.9,)
return outputs
def _mask_criteria(self, masks, v_min=200, v_max= 7000):
remove_list = set()
for _i, mask in enumerate(masks):
if mask.sum() < v_min or mask.sum() > v_max:
remove_list.add(_i)
masks = [mask for idx, mask in enumerate(masks) if idx not in remove_list]
n = len(masks)
remove_list = set()
for i in range(n):
for j in range(i + 1, n):
mask1, mask2 = masks[i], masks[j]
intersection = (mask1 & mask2).sum()
smaller_mask_area = min(masks[i].sum(), masks[j].sum())
if smaller_mask_area > 0 and (intersection / smaller_mask_area) >= 0.9:
if mask1.sum() < mask2.sum():
remove_list.add(i)
else:
remove_list.add(j)
return [mask for idx, mask in enumerate(masks) if idx not in remove_list]
def _roi_proto(self, image, masks):
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(self.device)
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
inputs = processor(image, return_tensors="pt").to(self.device)
image_embeddings = model.get_image_embeddings(inputs["pixel_values"])
embs = []
for _m in masks:
# Convert mask to uint8, resize, and then back to boolean
tmp_m = _m.astype(np.uint8)
tmp_m = cv2.resize(tmp_m, (64, 64), interpolation=cv2.INTER_NEAREST)
tmp_m = torch.tensor(tmp_m.astype(bool), device=self.device,
dtype=torch.float32) # Convert to tensor and send to CUDA
tmp_m = tmp_m.unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions to match emb1
# Element-wise multiplication with emb1
tmp_emb = image_embeddings * tmp_m
# (1,256,64,64)
tmp_emb[tmp_emb == 0] = torch.nan
emb = torch.nanmean(tmp_emb, dim=(2, 3))
emb[torch.isnan(emb)] = 0
embs.append(emb)
return embs
def _cosine_similarity(self, vec1, vec2):
# Ensure vec1 and vec2 are 2D tensors [1, N]
vec1 = vec1.view(1, -1)
vec2 = vec2.view(1, -1)
return cosine_similarity(vec1, vec2).item()
def _similarity_matrix(self, protos1, protos2):
# Initialize similarity_matrix as a torch tensor
similarity_matrix = torch.zeros(len(protos1), len(protos2), device=self.device)
for i, vec_a in enumerate(protos1):
for j, vec_b in enumerate(protos2):
similarity_matrix[i, j] = self._cosine_similarity(vec_a, vec_b)
# Normalize the similarity matrix
sim_matrix = (similarity_matrix - similarity_matrix.min()) / (similarity_matrix.max() - similarity_matrix.min())
return similarity_matrix
def _roi_match(self, matrix, masks1, masks2, sim_criteria=0.8):
index_pairs = []
while torch.any(matrix > sim_criteria):
max_idx = torch.argmax(matrix)
max_sim_idx = (max_idx // matrix.shape[1], max_idx % matrix.shape[1])
if matrix[max_sim_idx[0], max_sim_idx[1]] > sim_criteria:
index_pairs.append(max_sim_idx)
matrix[max_sim_idx[0], :] = -1
matrix[:, max_sim_idx[1]] = -1
masks1_new = []
masks2_new = []
for i, j in index_pairs:
masks1_new.append(masks1[i])
masks2_new.append(masks2[j])
return masks1_new, masks2_new
def _overlap_pair(self, masks1,masks2):
self.masks1_cor = []
self.masks2_cor = []
k = 0
for mask in masks1[:-1]:
k += 1
print('mask1 {} is finding corresponding region mask...'.format(k))
m1 = mask
a1 = mask.sum()
v1 = np.mean(np.expand_dims(m1, axis=-1) * self.im1)
overlap = m1 * masks2[-1].astype(np.int64)
# print(np.unique(overlap))
if (overlap > 0).sum() / a1 > 0.3:
counts = np.bincount(overlap.flatten())
# print(counts)
sorted_indices = np.argsort(counts)[::-1]
top_two = sorted_indices[1:3]
# print(top_two)
if top_two[-1] == 0:
cor_ind = 0
elif abs(counts[top_two[-1]] - counts[top_two[0]]) / max(counts[top_two[-1]], counts[top_two[0]]) < 0.2:
cor_ind = 0
else:
# cor_ind = 0
m21 = masks2[top_two[0]-1]
m22 = masks2[top_two[1]-1]
a21 = masks2[top_two[0]-1].sum()
a22 = masks2[top_two[1]-1].sum()
v21 = np.mean(np.expand_dims(m21, axis=-1)*self.im2)
v22 = np.mean(np.expand_dims(m22, axis=-1)*self.im2)
if np.abs(a21-a1) > np.abs(a22-a1):
cor_ind = 0
else:
cor_ind = 1
print('area judge to cor_ind {}'.format(cor_ind))
if np.abs(v21-v1) < np.abs(v22-v1):
cor_ind = 0
else:
cor_ind = 1
# print('value judge to cor_ind {}'.format(cor_ind))
# print('mask1 {} has found the corresponding region mask: mask2 {}'.format(k, top_two[cor_ind]))
self.masks2_cor.append(masks2[top_two[cor_ind] - 1])
self.masks1_cor.append(mask)
# return masks1_new, masks2_new
def get_paired_roi(self):
self.masks1 = self._sam_everything(self.img1) # len(RM.masks1) 2; RM.masks1[0] dict; RM.masks1[0]['masks'] list
self.masks2 = self._sam_everything(self.img2)
self.masks1 = self._mask_criteria(self.masks1['masks'], v_min=self.v_min, v_max=self.v_max)
self.masks2 = self._mask_criteria(self.masks2['masks'], v_min=self.v_min, v_max=self.v_max)
match self.mode:
case 'embedding':
if len(self.masks1) > 0 and len(self.masks2) > 0:
self.embs1 = self._roi_proto(self.img1,self.masks1) #device:cuda1
self.embs2 = self._roi_proto(self.img2,self.masks2)
self.sim_matrix = self._similarity_matrix(self.embs1, self.embs2)
self.masks1, self.masks2 = self._roi_match(self.sim_matrix,self.masks1,self.masks2)
case 'overlaping':
self._overlap_pair(self.masks1,self.masks2)
def visualize_masks(image1, masks1, image2, masks2):
# Convert PIL images to numpy arrays
background1 = np.array(image1)
background2 = np.array(image2)
# Convert RGB to BGR (OpenCV uses BGR color format)
background1 = cv2.cvtColor(background1, cv2.COLOR_RGB2BGR)
background2 = cv2.cvtColor(background2, cv2.COLOR_RGB2BGR)
# Create a blank mask for each image
mask1 = np.zeros_like(background1)
mask2 = np.zeros_like(background2)
distinct_colors = [
(255, 0, 0), # Red
(0, 255, 0), # Green
(0, 0, 255), # Blue
(255, 255, 0), # Cyan
(255, 0, 255), # Magenta
(0, 255, 255), # Yellow
(128, 0, 0), # Maroon
(0, 128, 0), # Olive
(0, 0, 128), # Navy
(128, 128, 0), # Teal
(128, 0, 128), # Purple
(0, 128, 128), # Gray
(192, 192, 192) # Silver
]
def random_color():
"""Generate a random color with high saturation and value in HSV color space."""
hue = random.randint(0, 179) # Random hue value between 0 and 179 (HSV uses 0-179 range)
saturation = random.randint(200, 255) # High saturation value between 200 and 255
value = random.randint(200, 255) # High value (brightness) between 200 and 255
color = np.array([[[hue, saturation, value]]], dtype=np.uint8)
return cv2.cvtColor(color, cv2.COLOR_HSV2BGR)[0][0]
# Iterate through mask lists and overlay on the blank masks with different colors
for idx, (mask1_item, mask2_item) in enumerate(zip(masks1, masks2)):
# color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
# color = distinct_colors[idx % len(distinct_colors)]
color = random_color()
# Convert binary masks to uint8
mask1_item = np.uint8(mask1_item)
mask2_item = np.uint8(mask2_item)
# Create a mask where binary mask is True
fg_mask1 = np.where(mask1_item, 255, 0).astype(np.uint8)
fg_mask2 = np.where(mask2_item, 255, 0).astype(np.uint8)
# Apply the foreground masks on the corresponding masks with the same color
mask1[fg_mask1 > 0] = color
mask2[fg_mask2 > 0] = color
# Add the masks on top of the background images
result1 = cv2.addWeighted(background1, 1, mask1, 0.5, 0)
result2 = cv2.addWeighted(background2, 1, mask2, 0.5, 0)
return result1, result2
def predict(im1,im2):
RM = RoiMatching(im1,im2,device='cpu')
RM.get_paired_roi()
visualized_image1, visualized_image2 = visualize_masks(im1, RM.masks1, im2, RM.masks2)
return visualized_image1, visualized_image2
examples = [
['./example/prostate_2d/image1.png', './example/prostate_2d/image2.png'],
['./example/cardiac_2d/image1.png', './example/cardiac_2d/image2.png'],
['./example/pathology/1B_B7_R.png', './example/pathology/1B_B7_T.png'],
]
gradio_app = gr.Interface(
predict,
inputs=[gr.Image(label="img1", sources=['upload', 'webcam'], type="pil"), gr.Image(label="img2", sources=['upload', 'webcam'], type="pil")]
outputs=[gr.Image(label="ROIs in img1"), gr.Image(label="ROIs in img2")],
title="SAMReg: One Registration is Worth Two Segmentations",
examples=examples,
description="<p> \
<strong>Register anything with ROI-based registration representation.</strong> <br>\
Choose an example below &#128293; &#128293; &#128293; <br>\
Or, upload by yourself: <br>\
1. Upload images to be valided to 'img1' and 'img2'. <br>2. Upload images to 'im1' and 'im2'. <br>\
<br> \
πŸ’Ž SAM segments the target with any point or scribble, then SegGPT segments all other images. <br>\
πŸ’Ž Examples below were never trained and are randomly selected for testing in the wild. <br>\
πŸ’Ž Current UI interface only unleashes a small part of the capabilities of SegGPT, i.e., 1-shot case. \
</p>",
)