Spaces:
Runtime error
Runtime error
import streamlit as st | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import pandas as pd | |
from transformers import pipeline | |
# Define the Hugging Face model pipeline | |
nlp = pipeline("sentiment-analysis") | |
# Define the hospital data as a Python list of dictionaries | |
hospital_data = [ | |
{"name": "Mayo Clinic", "beds": 1392, "latitude": 44.0205, "longitude": -92.4630}, | |
{"name": "University of Minnesota Medical Center", "beds": 908, "latitude": 44.9737, "longitude": -93.2278}, | |
{"name": "Abbott Northwestern Hospital", "beds": 631, "latitude": 44.9482, "longitude": -93.2616}, | |
{"name": "St. Cloud Hospital", "beds": 489, "latitude": 45.5563, "longitude": -94.1672}, | |
{"name": "Fairview Southdale Hospital", "beds": 342, "latitude": 44.8788, "longitude": -93.3521} | |
] | |
# Save the hospital data as a CSV file | |
hospital_df = pd.DataFrame(hospital_data) | |
hospital_df.to_csv("hospital_data.csv", index=False) | |
# Define the Streamlit app | |
def app(): | |
# Set the app title | |
st.title("Minnesota Hospital Data") | |
# Load the hospital data from the CSV file | |
hospital_df = pd.read_csv("hospital_data.csv") | |
# Display the hospital data as a table | |
st.write("Hospital Data:", hospital_df) | |
# Analyze the sentiment of the hospital names using the Hugging Face model | |
sentiment_scores = [nlp(hospital["name"])[0]["score"] for hospital in hospital_data] | |
sentiment_colors = ["red" if score < 0.5 else "green" for score in sentiment_scores] | |
hospital_df["sentiment_score"] = sentiment_scores | |
# Create a treemap chart of the hospital data | |
treemap_fig = px.treemap(hospital_df, path=["name"], values="beds", | |
color="sentiment_score", color_continuous_scale=["red", "green"], | |
hover_data=["latitude", "longitude"]) | |
treemap_fig.update_traces(hovertemplate="<b>%{label}</b><br>Beds: %{value}<br>Latitude: %{customdata[0]}<br>Longitude: %{customdata[1]}") | |
treemap_fig.update_layout(margin=dict(t=25, b=25, r=25, l=25)) | |
st.plotly_chart(treemap_fig) | |
# Display the top five largest hospitals in Minnesota | |
st.subheader("Top 5 Largest Hospitals in Minnesota") | |
largest_hospitals = hospital_df.nlargest(5, "beds") | |
st.write(largest_hospitals) | |
if __name__ == "__main__": | |
app() |