hhalim's picture
Create app.py
2a1fa25
raw
history blame
844 Bytes
import streamlit as st
from transformers import AutoModelWithLMHead, AutoTokenizer
# Title of the page
st.title("Text Generation with Huggingface Model")
# Tokenizer model selection
model_name = st.selectbox("Select a Huggingface model",
["distilbert-base-cased",
"gpt2",
"xlm-roberta-base"])
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelWithLMHead.from_pretrained(model_name)
# Text box where the user can enter the text
text = st.text_area("Enter the text",
"Type your text here...")
# Generate the text
if st.button("Generate"):
input_ids = tokenizer.encode(text, return_tensors="pt")
output_ids = model.generate(input_ids)[0]
generated_text = tokenizer.decode(output_ids)
st.write(generated_text)