hfmrbean commited on
Commit
7a24794
1 Parent(s): 93adc11

Upload 2 files

Browse files
Files changed (2) hide show
  1. Readme +8 -0
  2. vqa.py +29 -0
Readme ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ This is demo to use Visual question answering model using E2Ecloud ML.
2
+ This is based on gradio UI app with Azure cloud backend
3
+ Azure components used are storage,database,VM,CDN , load balancer.
4
+ Webserver is run Azure VM.
5
+ User can load images from client , that is stored in Azure backendand used by processos to access and process.
6
+ The processing transformer VQA module ( dandelin/vilt-b32-finetuned-vqa ) is loaded from huggingface interface.
7
+
8
+ The cloud backend is used for scaling
vqa.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from transformers import ViltProcessor, ViltForQuestionAnswering
4
+
5
+
6
+ def getResult(query, image):
7
+ # prepare image + question
8
+ #image = Image.open(BytesIO(base64.b64decode(base64_encoded_image)))
9
+ text = query
10
+
11
+ processor = ViltProcessor.from_pretrained(
12
+ "dandelin/vilt-b32-finetuned-vqa")
13
+ model = ViltForQuestionAnswering.from_pretrained(
14
+ "dandelin/vilt-b32-finetuned-vqa")
15
+
16
+ # prepare inputs
17
+ encoding = processor(image, text, return_tensors="pt")
18
+
19
+ # forward pass
20
+ outputs = model(**encoding)
21
+ logits = outputs.logits
22
+ idx = logits.argmax(-1).item()
23
+ print("Predicted answer:", model.config.id2label[idx])
24
+ return model.config.id2label[idx]
25
+
26
+
27
+ iface = gr.Interface(fn=getResult, inputs=[
28
+ "text", gr.Image(type="pil")], outputs="text")
29
+ iface.launch(server_name="0.0.0.0",share=True)